RECYCLING OF NANOPARTICLES STABILIZED EMULSION NANOFLUID MEMBRANE FOR THE REMOVAL OF DICLOFENAC: STABILITY AND PERFORMANCE ASSESSMENT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Emulsion instability is the main concern of the emulsion liquid membrane process for industrial use. The present investigation focuses on the removal of Diclofenac (DCF) from an aqueous solution by multiwall carbon nanotubes, Fe2O3, and SiO2 nanoparticles stabilized emulsion nanofluid membrane (ENM). The current study also emphasizes the recycling of nanoparticles and assesses the stability and performance of the ENM system. The optimization of parameters like treat ratio, emulsification time, and agitation speed was carried out by the application of Box−Behnken design and interaction plots were used for understanding the interdependence between the parameters and their combined effect on the % extraction of DCF. The optimum values for maximum removal of DCF were observed in the range: agitation speed: 400–500 rpm, emulsification time: 2.5–5 min, and treat ratio: 10–14. The ENMs were characterized by ATR-FTIR, DLS, photomicrographs, and Turbiscan. Emulsion recycling was also carried out for the reutilization of nanoparticles and the membrane phase. Turbiscan analysis of recycled ENMs was performed to examine the stability of ENMs after each cycle.

About the authors

ANSHUL SHARMA

Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Gujarat, Surat India

Email: mousumichakra1995@gmail.com
Индия, Сурат, Гажарат

HIMANSHU P. KOHLI

Department of Chemical Engineering, R.N.G. Patel Institute of Technology, Gujarat, Bardoli India

Email: himanshukohli07@gmail.com
Индия, Бардоли, Гажарат

MOUSUMI CHAKRABORTY

Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Gujarat, Surat India

Author for correspondence.
Email: mousumichakra1995@gmail.com
Индия, Сурат, Гажарат

References

  1. Angosto J.M., Roca M.J., Fernandez-Lopez J.A. Removal of diclofenac in wastewater using biosorption and advanced oxidation techniques : comparative results // Water. 2020. V. 12. № 12. P. 3567. 10.3390/w12123567' target='_blank'>https://doi.org/doi: 10.3390/w12123567
  2. Patel M., Kumar R., Kishor K. et al. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods // Chem Rev. 2019. V. 119. № 6. P. 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299
  3. Lara-Perez C., Levya E., Zeremeno B. et al. Photocatalytic degradation of diclofenac sodium salt: adsorption and reaction kinetic studies // Environ. Earth Sci. 2020. V. 79. P. 1–13. https://doi.org/10.1007/s12665-020-09017-z
  4. Ye X., Li Y., Lin H. et al. Lignin-based magnetic nanoparticle adsorbent for diclofenac sodium removal: adsorption, behavior and mechanisms // J. Polym. Environ. 2021. V. 29. P. 3401–3411. https://doi.org/10.1007/s10924-021-02127-0
  5. Shakeel F., Haq N., Ahmed M.A. et al. Removal of diclofenac sodium from aqueous solution using water/Transcutol/ethylene glycol/Capryol-90 green nanoemulsions // J. Mol. Liq. 2014. V. 199. P. 102–107. https://doi.org/10.1016/j.molliq.2014.08.030
  6. Wei H., Deng S., Huang Q. et al. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution // Water Res. 2013. V. 47. № 12. P. 4139–4147. https://doi.org/10.1016/j.watres.2012.11.062
  7. Oliveira T.D., Guégan R., Thiebault T. et al. Adsorption of diclofenac onto organoclays: effects of surfactant and environmental (pH and temperature) conditions // J. Hazard. Mater. 2017. V. 323. P. 558–566. https://doi.org/10.1016/j.jhazmat.2016.05.001
  8. Sun K., Shi Y., Chen H., et al. Extending surfactant-modified 2:1 clay minerals for the uptake and removal of diclofenac from water // J. Hazard. Mater. 2017. V. 323. P. 567–574. https://doi.org/10.1016/j.jhazmat.2016.05.038
  9. De Luna M.G., Murniati, Budianta W. et al. Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks // J. Environ. Chem. Eng. 2017. V. 5. № 2. P. 1465–1474. https://doi.org/10.1016/j.jece.2017.02.018
  10. Graouer-Bacart M., Sayen S., Guillon E. Adsorption and co-adsorption of diclofenac and Cu(II) on calcareous soils // Ecotoxicol. Environ. Saf. 2016. V. 124. P. 386–392. https://doi.org/10.1016/j.ecoenv.2015.11.010
  11. Lu X., Shao Y., Gao N. et al. Adsorption and removal of clofibric acid and diclofenac from water with MIEX resin // Chemosphere. 2016. V. 161. P. 400–411. https://doi.org/10.1016/j.chemosphere.2016.07.025
  12. Larous S., Meniai A.H. Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones // Int. J. Hydrogen Energy. 2016. V. 41. № 24. P. 10380–10390. https://doi.org/10.1016/j.ijhydene.2016.01.096
  13. Jodeh S., Abdelwahab F., Jaradat N. et al. Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC) // J. Assoc. Arab Univ. Basic Appl. Sci. 2016. V. 20. P. 32–38. https://doi.org/10.1016/j.jaubas.2014.11.002
  14. Marković M., Daković A., Krajišnik D. et al. Evaluation of the surfactant/phillipsite composites as carriers for diclofenac sodium // J. Mol. Liq. 2016. V. 222. P. 711–716. https://doi.org/10.1016/j.molliq.2016.07.127
  15. Nam S.W., Jung C., Li H. et al. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution // Chemosphere. 2015. V. 136. P. 20–26. https://doi.org/10.1016/j.chemosphere.2015.03.061
  16. Tiwari D., Lalhriatpuia C., Lee S.M. Hybrid materials in the removal of diclofenac sodium from aqueous solutions: batch and column studies // J. Ind. Eng. Chem. 2015. V. 30. P. 167–173. https://doi.org/10.1016/j.jiec.2015.05.018
  17. Saucier C., Adebayo M.A., Lima E.C. et al. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents // J. Hazard. Mater. 2015. V. 289. P. 18–27. https://doi.org/10.1016/j.jhazmat.2015.02.026
  18. Hu X., Cheng Z. Removal of diclofenac from aqueous solution with multi-walled carbon nanotubes modified by nitric acid // Chinese J. Chem. Eng. 2015. V. 23. P. 1551–1556. https://doi.org/10.1016/j.cjche.2015.06.010
  19. Pereira K.A.A., Osório L.R., Silva M.P. et al. Chemical modification of chitosan in the absence of solvent for diclofenac sodium removal: pH and kinetics studies // Mater Res. 2014. V. 17. P. 141–145. https://doi.org/10.1590/S1516-14392014005000043
  20. Krajišnik D., Daković A., Malenović A. et al. An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient // Microporous Mesoporous Mater. 2013. V. 167. P. 94–101. https://doi.org/10.1016/j.micromeso.2012.03.033
  21. Krajišnik D., Daković A., Malenović A. et al. Investigation of adsorption and release of diclofenac sodium by modified zeolites composites // Appl. Clay Sci. 2013. V. 83–84. P. 322–326. https://doi.org/10.1016/j.clay.2013.08.011
  22. Sotelo J.L., Rodríguez A., Álvarez S., García J. Removal of caffeine and diclofenac on activated carbon in fixed bed column // Chem. Eng. Res. Des. 2012. V. 90. № 7. P. 967–974. https://doi.org/10.1016/j.cherd.2011.10.012
  23. Antunes M., Esteves V.I., Guégan R. et al. Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse // Chem. Eng. J. 2012. V. 192. P. 114–121. https://doi.org/10.1016/j.cej.2012.03.062
  24. Faria E.R., Ribeiro F.M., Verly R.M. et al. An environmentally friendly electrochemical reactor for the degradation of organic pollutants in the total absence of a liquid electrolyte: a case study using diclofenac as a model pollutant // J. Environ. Chem. Eng. 2017. V. 5. № 4. P. 3873–3881. https://doi.org/10.1016/j.jece.2017.07.056
  25. Feng L., van Hullebusch E.D., Rodrigo M.A. et al. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes // Chem. Eng. J. 2013. V. 228. P. 944–964. https://doi.org/10.1016/j.cej.2013.05.061
  26. Chiron S., Duwig C. Biotic nitrosation of diclofenac in a soil aquifer system (Katari watershed, Bolivia) // Sci. Total Environ. 2016. V. 565. P. 473–480. https://doi.org/10.1016/j.scitotenv.2016.05.048
  27. Thiruppathi M., Kumar P.S., Devendran P. et al. Ce@TiO2 nanocomposites: an efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium // J. Alloys Compd. 2018. V. 735. P. 728–734. https://doi.org/10.1016/j.jallcom.2017.11.139
  28. Yu H., Nie E., Xu J. et al. Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways and toxicity assessments // Water Res. 2013. V. 47. № 5. P. 1909–1918. https://doi.org/10.1016/j.watres.2013.01.016
  29. Bae S., Kim D., Lee W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation // Appl. Catal. B Environ. 2013. V. 134–135. P. 93–102. https://doi.org/10.1016/j.apcatb.2012.12.031
  30. Hama Aziz K.H., Miessner H., Mueller S. et al. Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis and non-thermal plasma // Chem. Eng. J. 2017. V. 313. P. 1033–1041. https://doi.org/10.1016/j.cej.2016.10.137
  31. Brillas E., Garcia-Segura S., Skoumal M., Arias C. Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes // Chemosphere. 2010. V. 79. № 6. P. 605–612. https://doi.org/10.1016/j.chemosphere.2010.03.004
  32. Sun K., Shi Y., Wang X., Li Z. Sorption and retention of diclofenac on zeolite in the presence of cationic surfactant // J. Hazard. Mater. 2017. V. 323. P. 584–592. https://doi.org/10.1016/j.jhazmat.2016.08.026
  33. Krajišnik D., Daković A., Milojević M. et al. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride // Colloids Surfaces B: Biointerfaces. 2011. V. 83. № 1. P. 165–172. https://doi.org/10.1016/j.colsurfb.2010.11.024
  34. Gupta S., Khandale P.B., Chakraborty M. Application of emulsion liquid membrane for the extraction of diclofenac and relationship with the stability of water-in-Oil emulsions // J. Dispers. Sci. Technol. 2020. V. 41. № 3. P. 393–401. https://doi.org/10.1080/01932691.2019.1579655
  35. Kohli H.P., Gupta S., Chakraborty M. Comparative studies on the separation of endocrine disrupting compounds from aquatic environment by emulsion liquid membrane and hollow fiber supported liquid membrane // Int. J. Chem. React. Eng. 2021. V. 19. № 7. P. 689–698. https://doi.org/10.1515/ijcre-2020-0153
  36. Seifollahi Z., Rahbar-Kelishami A. Diclofenac extraction from aqueous solution by an emulsion liquid membrane: parameter study and optimization using the response surface methodology // J. Mol. Liq. 2017. V. 231. P. 1–10. https://doi.org/10.1016/j.molliq.2017.01.081
  37. Binks B.P., Whitby C.P. Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability // Colloids Surfaces A: Physicochem. Eng. Asp. 2005. V. 253. № 1–3. P. 105–115. https://doi.org/10.1016/j.colsurfa.2004.10.116
  38. Binks B.P., Rodrigues J.A. Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation // Langmuir. 2007. V. 23. P. 7436–7439. https://doi.org/10.1021/la700597k
  39. Salman H.M., Mohammed A.A. Extraction of lead ions from aqueous solution by co-stabilization mechanisms of magnetic Fe2O3 particles and nonionic surfactants in emulsion liquid membrane // Colloids Surfaces A. 2019. V. 568. P. 301–310. https://doi.org/10.1016/j.colsurfa.2019.02.018
  40. Kohli H.P., Gupta S., Chakraborty M. Stability and performance study of emulsion nanofluid membrane: a combined approach of adsorption and extraction of ethylparaben // Colloids Surfaces A: Physicochem. Eng. Asp. 2019. V. 579. P. 123675. https://doi.org/10.1016/j.colsurfa.2019.123675
  41. Shirokikh S.A., Klevtsova E.O., Savchenko A.G., Koroleva M.Y. Stability of highly concentrated water-in-oil emulsions with magnetic nanoparticles and the structure of highly porous polymers formed on their basis // Colloid J. 2021. V. 83. № 6. P. 806–815. https://doi.org/10.1134/s1061933x21060120
  42. Kohli H.P., Gupta S., Chakraborty M. Extraction of ethylparaben by emulsion liquid membrane: statistical analysis of operating parameters // Colloids Surfaces A: Physicochem. Eng. Asp. 2018. V. 539. P. 371–381. https://doi.org/10.1016/j.colsurfa.2017.12.002
  43. Nandwani S.K., Chakraborty M., Gupta S. Adsorption of surface active ionic liquids on different rock types under high salinity conditions // Sci. Rep. 2019. V. 9. P. 147601. https://doi.org/10.1038/s41598-019-51318-2
  44. Kohli H.P., Gupta S., Chakraborty M. Statistical analysis of operating variables for pseudo-emulsion hollow fiber strip dispersion technique: ethylparaben separation from aqueous feed stream // Chem. Pap. 2021. V. 75. P. 629–640. https://doi.org/10.1007/s11696-020-01317-9
  45. Chakraborty M., Bhattacharya C., Datta S. Emulsion Liquid Membranes: Definitions and Classification, Theories, Module Design, Applications, New Directions and Perspectives, Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment. V.S. Kislik, 1st Ed., Amsterdam, The Netherlands: Elsveir. 2010. P. 141–199. https://doi.org/10.1016/B978-0-444-53218-3.00004-0
  46. Kumar A., Thakur A., Panesar P.S. A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams // Study Rev. Environ. Sci. Biotechnol. 2019. V. 18. P. 153–182. https://doi.org/10.1007/s11157-019-09492-2
  47. Ahmad A.L., Zaulkiflee N.D., Kusumastuti A., Buddin M.M.H.S. Removal of acetaminophen from aqueous solution by emulsion liquid membrane: emulsion stability study // Ind. Eng. Chem. Res. 2019. V. 58. P. 713–719. https://doi.org/10.1021/acs.iecr.8b03562
  48. Kohli H.P., Gupta S., Chakraborty M. Separation of diclofenac using pseudo-emulsion hollow fiber membrane: optimization by Box–Behnken response surface design // J. Water Process Eng. 2019. V. 32. P. 100880. https://doi.org/10.1016/j.jwpe.2019.100880
  49. Umrigar V.R., Chakraborty M., Parikh P.A., Kohli H.P. Optimization of process parameters for oleic acid esterification using microwave reactor: catalytic activity, product distribution and reactor energy model // Energy Nexus. 2022. V. 7. P. 100127. https://doi.org/10.1016/j.nexus.2022.100127
  50. Fu X., Kong W., Zhang Y. et al. Novel solid–solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage // RSC Adv. 2015. V. 5. № 84. P. 68881–68889. https://doi.org/10.1039/c5ra11842e
  51. Senthilnathan J., Mohan S., Palanivelu K. Recovery of chromium from electroplating wastewater using di 2‑(ethylhexyl) phosphoric acid // Sep. Sci. Technol. 2005. V. 40. P. 2125–2137. https://doi.org/10.1081/SS-200068492
  52. Chen J.J., Zhang Q., Shi Y.N. et al. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries // Phys. Chem. Chem. Phys. 2012. V. 14. № 16. P. 5376–5382. https://doi.org/10.1039/c2cp40141j
  53. Hwang S.W., Umar A., Dar G.N. et al. Synthesis and characterization of iron oxide nanoparticles for phenyl hydrazine sensor applications // Sens. Lett. 2014. V. 12. № 1. P. 97–101. https://doi.org/10.1166/sl.2014.3224
  54. Saravanan S., Dubey R.S. Synthesis of SiO2 nanoparticles by sol-gel method and their optical and structural properties // Rom. J. Inf. Sci. Technol. 2020. V. 23. № 1. P. 105–112.
  55. Kruglyakov P., Nushtayeva A. Emulsions stabilized by solid particles: the role of capillary pressure in the emulsion films, in Interface Sci Technol Emulsions, Petsev D.N. (Ed.). Amsterdam: Elsevier, 2004, P. 641–676. https://doi.org/10.1016/S1573-4285(04)80018-8
  56. Shirasangi R., Kohli H.P., Gupta S., Chakraborty M. Separation of methylparaben by emulsion liquid membrane: optimization, characterization, stability and multiple cycles studies // Colloids Surfaces A: Physicochem Eng. Asp. 2020. V. 597. P. 124761. https://doi.org/10.1016/j.colsurfa.2020.124761
  57. Kohli H.P., Gupta S., Chakraborty M. Characterization and stability study of pseudo-emulsion hollow fiber membrane: separation of ethylparaben // Colloids Surfaces A. 2020. V. 587. P. 24308. https://doi.org/10.1016/j.colsurfa.2019.124308
  58. Fu W., Zhang W. Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope // Phys. Chem. Chem. Phys. 2018. V. 20. № 37. P. 24434.https://doi.org/10.1039/C8CP04676J
  59. Lin Z., Zhang Z., Li Y., Deng Y. Recyclable magnetic-Pickering emulsion liquid membrane for extracting phenol compounds from wastewater // J. Mater. Sci. 2016. V. 51. P. 6370–6378. https://doi.org/10.1007/s10853-016-9933-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (296KB)
3.

Download (237KB)
4.

Download (1MB)
5.

Download (313KB)
6.

Download (153KB)
7.

Download (1MB)
8.

Download (136KB)
9.

Download (427KB)
10.

Download (459KB)
11.

Download (149KB)
12.

Download (2MB)
13.

Download (215KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies