LASER GENERATION OF COLLOIDAL NANOPARTICLES IN LIQUIDS: KEY PROCESSES OF LASER DISPERSION AND MAIN CHARACTERISTICS OF NANOPARTICLES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The processes of laser dispersion of materials for high-performance generation of colloidal nanoparticles in liquids have been considered. Various laser and material parameters affecting this process have been studied. Efficiencies and ergonomics of the generation of colloidal nanoparticles with the help of laser systems having nano-, pico-, and femtosecond pulse durations have been compared using optical and mass criteria by the example of laser ablation of a chemically inert model material (gold) in distilled water without the use of chemical stabilizers. The main characteristics of gold and silver nanoparticles obtained by ablation in water using pulsed laser radiation of different durations have been comprehensively compared. The types of colloidal interactions between nanoparticles in aqueous media have been discussed, and the contributions of structural and ion-electrostatic interactions to the long-term stability of gold and silver nanoparticle dispersions have been analyzed.

About the authors

A. A. NASTULYAVICHUS

Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia.

Email: nastulyavichusaa@lebedev.ru
Россия, 119991, Москва, Ленинский просп., 53, корп. 1

S. I. KUDRYASHOV

Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia.

Email: nastulyavichusaa@lebedev.ru
Россия, 119991, Москва, Ленинский просп., 53, корп. 1

A. M. EMELYANENKO

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

Email: nastulyavichusaa@lebedev.ru
Россия, 119071, Москва, Ленинский просп. 31, корп. 4

L. B. L. B. BOINOVICH

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: nastulyavichusaa@lebedev.ru
Россия, 119071, Москва, Ленинский просп. 31, корп. 4

References

  1. Mohanraj V.J., Chen Y. Nanoparticles – A review // Trop. J. Pharm. Res. 2007. V. 5. № 1. P. 561–573. https://doi.org/10.4314/tjpr.v5i1.14634
  2. Alsaba M.T., Al Dushaishi M.F., Abbas A.K. A comprehensive review of nanoparticles applications in the oil and gas industry // J. Pet. Explor. Prod. Technol. 2020. V. 10. № 4. P. 1389–1399. https://doi.org/10.1007/s13202-019-00825-z
  3. Tribelsky M.I., Geffrin J.-M. Litman A., Eyraud Ch., Moreno F. Small dielectric spheres with high refractive index as new multifunctional elements for optical devices // Sci. Rep. 2015. V. 5. № 1. P. 1–7. https://doi.org/10.1038/srep12288
  4. Suvarna S., Ramesan M.T. Optical and electrical properties of copper alumina nanoparticles reinforced chlorinated polyethylene composites for optoelectronic devices // J. Indian Chem. Soc. 2022. V. 99. № 11. P. 100772. https://doi.org/10.1016/j.jics.2022.100772
  5. Sharifianjazi F., Moradi M., Parvin N., Nemati A., Rad A.J., Sheysi N., Abouchenari A., Mohammadi A., Karbasi S., Ahmadi Z., Esmaeilkhanian A., Irani M., Pakseresht A., Sahmani S., Asl M. S. Magnetic CoFe2O4 nanoparticles doped with metal ions: a review // Ceram. Int. 2020. V. 46. № 11. P. 18391–18412. https://doi.org/10.1016/j.ceramint.2020.04.202
  6. Liu X.X., Alù A. Subwavelength leaky-wave optical nanoantennas: directive radiation from linear arrays of plasmonic nanoparticles // Phys. Rev. B – Condens. Matter Mater. Phys. 2010. V. 82. № 14. P. 144305. https://doi.org/10.1103/PhysRevB.82.144305
  7. Doering W.E., Nie S. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced raman scattering // Anal. Chem. 2003. V. 75. № 22. P. 6171–6176. https://doi.org/10.1021/ac034672u
  8. Lee C., Zhang P. Facile synthesis of gelatin-protected silver nanoparticles for SERS applications // J. Raman Spectrosc. 2013. V. 44. № 6. P. 823–826. https://doi.org/10.1002/jrs.4304
  9. Jun B.-H., Noh M.S., Kim J., Kang H., Kim M.-S., Seo Y.-T., Baek J.-H., Kim J., Park J., Kim S., Hyeon T., Cho M.-H., Jeong D.H., Lee Y.-S. Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications // Small. 2010. V. 6. № 1. P. 119–125. https://doi.org/10.1002/smll.200901459
  10. Balachandran Y.L., Panarin A.Y., Khodasevich I.A., Terekhov S.N., Gutleb A.C., Girijaa S. Environmentally friendly preparation of gold and silver nanoparticles for sers applications using biopolymer pectin // J. Appl. Spectrosc. 2015. V. 81. № 6. P. 962–968. https://doi.org/10.1007/s10812-015-0036-9
  11. Du Z., Qi Y., He J., Zhong D., Zhou M. Recent advances in applications of nanoparticles in SERS in vivo imaging // Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021. V. 13. № 2. P. e1672. https://doi.org/10.1002/wnan.1672
  12. Sharma P., Bengtsson N.E., Walter G.A., Sohn H.-B., Zhou G., Iwakuma N., Zeng H., Grobmyer S.R., Scott E.W., Moudgil B.M. Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging // Small. 2012. V. 8. № 18. P. 2856–2868. https://doi.org/10.1002/smll.201200258
  13. Gu L., Hall D.J., Qin Zh., Anglin E., Joo J., Mooney D.J., Howell S.B., Sailor M.J. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles // Nat. Commun. 2013. V. 4. № 1. P. 1–7. https://doi.org/10.1038/ncomms3326
  14. Nesterov V.Y., Sokolovskaya O.I., Golovan L.A., Shuleiko D.V., Kolchin A.V., Presnov D.E., Kashkarov P.K., Khilov A.V., Kurakina D.A., Kirillin M.Yu., Sergeeva E.A., Zabotnov S.V. Laser fragmentation of silicon microparticles in liquids for solution of biophotonics problems // Quantum Electron. 2022. V. 52. № 2. P. 160–170. https://doi.org/10.1070/QEL17984
  15. Meng Y. Zou Ch., Madiyalakan R., Woo T., Huang M., Yang X., Swanson E., Chen J., Xing J.Z. Water-soluble and biocompatible sono/photosensitizer nanoparticles for enhanced cancer therapy // Nanomedicine. 2010. V. 5. № 10. P. 1559–1569. https://doi.org/10.2217/nnm.10.91
  16. Rosenholm J.M., Mamaeva V., Sahlgren C., Linden M. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage // Nanomedicine. 2012. V. 7. № 1. P. 111–120. https://doi.org/10.2217/nnm.11.166
  17. Ohulchanskyy T.Y., Roy I., Goswami L.N., Chen Y., Bergey E.J.,Pandey R.K., Oseroff A.R., Prasad P.N. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer // Nano Lett. 2007. V. 7. № 9. P. 2835–2842. https://doi.org/10.1021/nl0714637
  18. Zhang K. Yang P.-P., Zhang J.-P., Wang L., Wang H. Recent advances of transformable nanoparticles for theranostics // Chinese Chemical Letters. 2017. V. 28. № 9. P. 1808–1816. https://doi.org/10.1016/j.cclet.2017.07.001
  19. Yang J., Zhang X., Liu C., Wang Z., Deng L., Feng C., Tao W., Xu X., Cui W. Biologically modified nanoparticles as theranostic bionanomaterials // Prog. Mater. Sci. 2021. V. 118. P. 100768. https://doi.org/10.1016/j.pmatsci.2020.100768
  20. Behzad F.F., Naghib S.M., Jadidi kouhbanani M.A., Tabatabaei. S.N., Zare Y., Rhee K.Y. An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications // J. Ind. Eng. Chem. 2021. V. 94. P. 92–104. https://doi.org/10.1016/j.jiec.2020.12.005
  21. Yuan Y. Ding J., Xu J., Deng J., Guo J. TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application // J. Nanosci. Nanotechnol. 2010. V. 10 № 8. P. 4868–4874. https://doi.org/10.1166/jnn.2010.2225
  22. Nastulyavichus A., Kudryashov S., Smirnov N., Saraeva I., Rudenko A., Tolordava E., Ionin A., Romanova Yu., Zayarny D. Antibacterial coatings of Se and Si nanoparticles // Appl. Surf. Sci. 2019. V. 469. P. 220–225. https://doi.org/10.1016/j.apsusc.2018.11.011
  23. Bruna T., Maldonado-Bravo F., Jara P., Caro N. Silver nanoparticles and their antibacterial applications // Int. J. Mol. Sci. 2021. V. 22. № 13. P. 7202. https://doi.org/10.3390/ijms22137202
  24. Navarro-López D.E., Sánchez-Huerta T.M., Flores-Jimenez M.S., Tiwari N., Sanchez-Martinez A., Ceballos-Sanchez O., Garcia-Gonzalez A., Fuentes-Aguilar R.Q., Sanchez-Ante G., Corona-Romero K., Rincon-Enriquez G., López-Mena E.R. Nanocomposites based on doped ZnO nanoparticles for antibacterial applications // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. V. 652. P. 129871. https://doi.org/10.1016/j.colsurfa.2022.129871
  25. Roy A., Singh V., Sharma S., Ali D., Azad A.K., Kumar G., Emran T.B. Antibacterial and dye degradation activity of green synthesized iron nanoparticles // J. Nanomater. 2022. V. 2022. P. 1–6. https://doi.org/10.1155/2022/3636481
  26. Batoo K.M., Kumar G., Yang Y., Al-Douri Y., Singh M., Jotania R.B., Imran A. Structural, morphological and electrical properties of Cd2+ doped MgFe2 – xO4 ferrite nanoparticles // Journal of Alloys and Compounds. 2017. V. 726. P. 179–186. https://doi.org/10.1016/j.jallcom.2017.07.237
  27. Wang H., Qiao X., Chen J., Ding, S. Preparation of silver nanoparticles by chemical reduction method // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005. V. 256. № 2–3. P. 111–115.https://doi.org/10.1016/j.colsurfa.2004.12.058
  28. De Souza C.D., Nogueira B.R., Rostelato M.E.C. De Souza C.D., Nogueira B.R., Rostelato M.E.C. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction // Journal of Alloys and Compounds. 2019. V. 798. P. 714–740. https://doi.org/10.1016/j.jallcom.2019.05.153
  29. Daka M., Ferrara M., Bevilacqua M., Pengo P., Rajak P., Ciancio R., Montini T., Pasquato L., Fornasiero P. Wet-chemical synthesis of porous multifaceted platinum nanoparticles for oxygen reduction and methanol oxidation reactions // ACS Applied Nano Materials. 2022. V. 5. № 4. P. 4710–4720. https://doi.org/10.1021/acsanm.1c04149
  30. Al-Douri A.T., Gdoura R., Al-Douri Y., Bouhemadou A., Abd El-Rehim A.F. Green synthesis, analysis and characterization of XZnFe2O3 (X = Mg, Co, Ni) quaternary alloys nanoparticles and their potential application for optoelectronics and antibacterial // Journal of Materials Research and Technology. 2021. V. 15. P. 1487–1495. https://doi.org/10.1016/j.jmrt.2021.08.120
  31. Zonarsaghar A., Mousavi-Kamazani M., Zinatloo-Ajabshir S. Co-precipitation synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage // J. Mater. Sci.: Mater. Electron. 2022. V. 33. № 9. P. 6549–6554. https://doi.org/10.1007/s10854-022-07829-2
  32. Mahmood N.B., Saeed F.R., Gbashi K.R., Mahmood U.S. Synthesis and characterization of zinc oxide nanoparticles via oxalate co – precipitation method // Materials Letters: X. 2022. V. 13. P. 100126. https://doi.org/10.1016/j.mlblux.2022.100126
  33. Jiang Z.-H., Li W.-D., Yang X., Chen X., Wang C., Chen M.-Y., Zhang G.-J. Low dielectric loss and high breakdown strength photosensitive high-k composites containing perfluoroalkylsilane treated BaTiO3 nanoparticles // Composites Part B: Engineering. 2020. V. 192. P. 108013. https://doi.org/10.1016/j.compositesb.2020.108013
  34. Shahrousvand M., Hajikhani M., Nazari L., Aghelinejad A., Shahrousvand M., Irani M., Rostami A. Preparation of colloidal nanoparticles PVA – PHEMA from hydrolysis of copolymers of PVAc–PHEMA as anticancer drug carriers // Nanotechnology. 2022. V. 33. № 27. P. 275603.
  35. Batoo K.M., Raslan E.H., Yang Y., Adil S.F., Khan M., Imran A., Al-Douri Y. Structural, dielectric and low temperature magnetic response of Zn doped cobalt ferrite nanoparticles // AIP Advances. 2019. V. 9. № 5. P. 055202. https://doi.org/10.1063/1.5078411
  36. Gherab K., Al-Douri Y., Voon C.H., Hashim U., Ameri M., Bouhemadou A. Aluminium nanoparticles size effect on the optical and structural properties of ZnO nanostructures synthesized by spin-coating technique // Results in Physics. 2017. V. 7. P. 1190–1197.https://doi.org/10.1016/jrinp.2017.03.013
  37. Al-Douri Y., Gherab K., Batoo K.M., Raslan E.H. Detecting the DNA of dengue serotype 2 using aluminium nanoparticle doped zinc oxide nanostructure: synthesis, analysis and characterization // Journal of Materials Research and Technology. 2020. V. 9. № 3. P. 5515–5523. https://doi.org/10.1016/j.jmrt.2020.03.076
  38. Gherab K., Al-Douri Y., Hashim U., Ameri M., Bouhemadou A., Batoo K.M., Adil S.F., Khan M., Raslan E.H. Fabrication and characterizations of Al nanoparticles doped ZnO nanostructures-based integrated electrochemical biosensor // Journal of Materials Research and Technology. 2020. V. 9. № 1. P. 857–867.https://doi.org/10.1016/j.jmrt.2019.11. 025
  39. Patel M., Mishra S., Verma R., Shikha D. Synthesis of ZnO and CuO nanoparticles via sol gel method and its characterization by using various technique // Discover Materials. 2022. V. 2. № 1. P. 1. https://doi.org/10.1007/s43939-022-00022-6
  40. Nachit W., Ahsaine H.A., Ramzi Z., Touhtouh S., Goncharova I., Benkhouja K. Photocatalytic activity of anatase-brookite TiO2 nanoparticles synthesized by sol gel method at low temperature // Opt. Mater. 2022. V. 129. P. 112256. https://doi.org/10.1016/j.optmat.2022.112256
  41. Mohamed W.S., Hadia N.M.A., Al bakheet B., Alzaid M., Abu-Dief A.M. Impact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1 – xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approach // Solid State Sciences. 2022. V. 125. P. 106841. https://doi.org/10.1016/j.solidstatesciences.2022.106841
  42. Tajik S., Beitollahi H. Hydrothermal synthesis of CuFe2O4 nanoparticles for highly sensitive electrochemical detection of sunset yellow // Food Chem. Toxicol. 2022. V. 165. P. 113048. https://doi.org/10.1016/j.fct.2022.113048
  43. Yang C., Li T., Yang Q., Guo Y., Tao T. One-step hydrothermal synthesis of fluorescent silicon nanoparticles for sensing sulfide ions and cell imaging // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2022. V. 273. P. 121048. https://doi.org/10.1016/j.saa.2022.121048
  44. Al-Douri Y. 3-Nanosecond pulsed laser ablation to synthesize ternary alloy colloidal nanoparticles, in: S. Thomas, A. Tresa Sunny, P. Velayudhan (Eds.), Colloidal Metal Oxide Nanoparticles, Metal Oxides. 2020. P. 25–38. https://doi.org/:10.1016/B978-0-12-813357-6.00003-6
  45. Дыкман Л.А., Богатырев В.А. Наночастицы золота: получение, функционализация, использование в биохимии и иммунохимии // Успехи химии. 2007. Т. 76. № 2. С. 199–213.
  46. Nasrollahzadeh M., Shafiei N., Eslamipanah M., Fakhri P., Jaleh B., Orooji Y., Varma R.S. Preparation of Au nanoparticles by Q switched laser ablation and their application in 4-nitrophenol reduction // Clean Technologies and Environmental Policy. 2020. V. 22. № 8. P. 1715–1724. https://doi.org/10.1007/s10098-020-01899-8
  47. Liu Z., Yuan Y., Khan S., Abdolvand A., Whitehead D., Schmidt M., Li L. Generation of metal-oxide nanoparticles using continuous-wave fibre laser ablation in liquid // Journal of Micromechanics and Microengineering. 2009. V. 19. № 5. P. 054008. https://doi.org/10.1088/0960-1317/19/5/054008
  48. Schinca D.C., Scaffardi L.B., Videla F.A., Torchia G.A., Moreno P., Roso L. Silver–silver oxide core–shell nanoparticles by femtosecond laser ablation: core and shell sizing by extinction spectroscopy // Journal of Physics D: Applied Physics. 2009. V. 42. № 21. P. 215102. https://doi.org/10.1088/0022-3727/42/21/215102
  49. Seifikar F., Azizian S., Eslamipanah M., Jaleh B. Efficient photo-thermal conversion using Pt nanofluid prepared by laser ablation in liquid // Sol. Energy Mater Sol. Cells. 2022. V. 238. P. 111581. https://doi.org/10.1016/j.solmat.2022.111581
  50. Aman A.W., Omar M.F., Samavati A., Krishnan G. A simple green synthesis of pure and sterling silver nanoparticles via pulsed laser ablation in deionized water: characterization and comparison // Phys Scr. 2022. V. 97. № 10. P. 105801.https://doi.org/10.1088/1402-4896/ac8b44
  51. Karsakova M., Shchedrina N., Karamyants A., Ponkratova E., Odintsova G., Zuev D. Eco-friendly approach for creation of resonant silicon nanoparticle colloids // Langmuir. 2023. V. 39. № 1. P. 204–210. https://doi.org/10.1021/acs.langmuir.2c02382
  52. Sajti C.L., Sattari R., Chichkov B.N., Barsikowski S. Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid // J. Phys. Chem. C. 2010. V. 114. № 6. P. 2421–2427. https://doi.org/10.1021/jp906960g
  53. Bärsch N., Jakobi J., Barsikows S. Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablationin water and acetone // Nanotechnology. 2009. V. 20. № 44. P. 445603. https://doi.org/10.1088/0957-4484/20/44/445603
  54. Gökce B., Streubel R., Barcikowski S. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids // Opt. Lett. 2016. V. 41. № 7. P. 1486–1489. https://doi.org/10.1364/OL.41.001486
  55. Nastulyavichus A., Smirnov N., Kudryashov S. Quantitative evaluation of LAL productivity of colloidal nanomaterials: which laser pulsewidth is more productive, ergonomic and economic? // Chinese Physics B. 2022. V. 31. P. 077803. https://doi.org/10.1088/1674-1056/ac5602
  56. Nastulyavichus A.A., Kudryashov S.I., Smirnov N.A., Rudenko A.A., Kharin A.Y., Zayarny D.A., Ionin A.A. Nanosecond-laser plasma-mediated generation of colloidal solutions from silver films of variable thickness: colloidal optical density versus pre-determined ablated mass // Optics & Laser Technology. 2019. V. 111. P. 75–80. https://doi.org/10.1016/j.optlastec.2018.09.038
  57. Krokhin O.N. High-temperature and plasma phenomena induced by laser radiation // Phys. High Energy Density. 1971. P. 278.
  58. Kudryashov S.I., Samokhvalov A.A., Ageev E.I., Petrov A.A., Veiko V.P. Ultrasonic characterization of dry and wet nanosecond laser ablation of solids // Int. J. Heat Mass Transf. 2018. V. 127. P. 1095–1100. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.104
  59. Nastulyavichus A., Kudryashov S., Ionin A., Yushina Y., Semenova A., Gonchukov S. Focusing effects during ultrashort-pulse laser ablative generation of colloidal nanoparticles for antibacterial applications // Laser Phys Lett. 2022. V. 19. № 6. P. 065601. https://doi.org/10.1088/1612-202X/ac642e
  60. Saraeva I.N., Kudryashov S.I., Rudenko A.A., Zhilnikova M.I., Ivanov D.S., Zayarny D.A., Simakin A.V., Ionin A.A., Garcia M.E. Effect of fs/ps laser pulsewidth on ablation of metals and silicon in air and liquids, and on their nanoparticle yields // Appl. Surf. Sci. 2019. V. 470. P. 1018–1034. https://doi.org/10.1016/j.apsusc.2018.11.199
  61. Amendola V., Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles // Phys. Chem. Chem. Phys. 2009. V. 11. № 20. P. 3805–3821. https://doi.org/10.1039/B900654K
  62. Иногамов Н.А., Петров Ю.В., Хохлов В.А., Жаховский В.В. Лазерная абляция: физические представления и приложения (обзор) // Теплофизика высоких температур. 2020. Т. 58. № 4. С. 689–706. https://doi.org/10.31857/S0040364420040043
  63. Royon A., Petit Y., Richardson M., Canioni L. Femtosecond laser induced photochemistry in materials tailored with photosensitive agents // Opt. Mater. Express. 2011. V. 1 № 5. P. 866–882.
  64. Kudryashov S.I., Samokhvalov A.A., Nastulyavichus A.A., Saraeva I.N., Mikhailovskii V.Y., Ionin A.A., Veiko V.P. Nanosecond-laser generation of nanoparticles in liquids: From ablation through bubble dynamics to nanoparticle yield // Materials. 2019. V. 12. № 4. P. 562. https://doi.org/10.3390/ma12040562
  65. Paul S., Kudryashov S.I, Lyon K., Allen S.D. Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids // Journal of Applied Physics. 2007. V. 101. № 4. P. 043106. https://doi.org/10.1063/1.2434829
  66. Bulgakova N.M., Evtushenko A.B., Shukhov Y.G., Kudryashov S.I., Bulgakov A.V. Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses // Appl. Surf. Sci. 2011. V. 257. № 24. P. 10876–10882. https://doi.org/10.1016/j.apsusc.2011.07.126
  67. Kudryashov S.I., Paul S., Lyon K., Allen S.D. Dynamics of laser-induced surface phase explosion in silicon // Appl. Phys. Lett. 2011. V. 98. № 25. P. 254102. https://doi.org/10.1063/1.3595328
  68. Lam J., Lombard J., Dujardin C., Ledoux G., Merabia S., Amans D. Dynamical study of bubble expansion following laser ablation in liquids // Appl. Phys. Lett. 2016. V. 108. № 7. P.074104. https://doi.org/10.1063/1.4942389
  69. Ibrahimkutty S., Wagener P., Menzel A., Plech A., Barcikowski S. Nanoparticle formation in a cavitation bubble after pulsed laser ablation in liquid studied with high time resolution small angle X-ray scattering // Appl. Phys. Lett. 2012. V. 101. № 10. P. 103104. https://doi.org/10.1063/1.4750250
  70. Yan Z., Chrisey D.B. Pulsed laser ablation in liquid for micro-/nanostructure generation // J. Photochem. Photobiol. C: Photochem. Rev. 2012. V. 13. P. 204–223. https://doi.org/10.1063/1.4750250
  71. Letzel A., Santoro M., Frohleiks J., Ziefuß A.R., Reich S., Plech A., Gökce B. How the re-irradiation of a single ablation spot affects cavitation bubble dynamics and nanoparticles properties in laser ablation in liquids // Appl. Surf. Sci. 2019. V. 473. P. 828–837. https://doi.org/10.1016/j.apsusc.2018.12.025
  72. Maciulevičius M., Vinčiūnas A., Brikas M., Butsen A., Tarasenka N., Tarasenko N., Račiukaitis G. Pulsed-laser generation of gold nanoparticles with on-line surface plasmon resonance detection // Appl. Phys. A Mater. Sci. Process. 2013. V. 111. № 1. P. 289–295. https://doi.org/10.1007/s00339-012-7535-9
  73. Hamad A., Li L., Liu Z. A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water // Appl. Phys. A. 2015. V. 120. № 4. P. 1247–1260. https://doi.org/10.1007/s00339-015-9326-6
  74. Dittrich S., Streubel R., McDonnell C., Huber H.P., Barsikowski S., Gökce B. Comparison of the productivity and ablation efficiency of different laser classes for laser ablation of gold in water and air // Appl. Phys. A. 2019. V. 125. № 6. P. 1–10. https://doi.org/10.1007/s00339-019-2704-8
  75. Khlebtsov B.N., Khlebtsov N.G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method // Colloid Journal. 2011. V. 73. № 1. P. 118–127. https://doi.org/10.1134/S1061933X11010078
  76. Ramos A.P. Dynamic light scattering applied to nanoparticle characterization // Nanocharacterization Techniques. William Andrew Publishing, 2017. P. 99–110. https://doi.org/10.1016/B978-0-323-49778-7.00004-7
  77. Quik J.T., Stuart M.C., Wouterse M., Peijnenburg W., Hendriks A.J., van de Meent D. Natural colloids are the dominant factor in the sedimentation of nanoparticles // Environmental Toxicology and Chemistry. 2012. V. 31. № 5. P. 1019–1022. https://doi.org/10.1002/etc.1783
  78. Vesaratchanon S., Nikolov A., Wasan D.T. Sedimentation in nano-colloidal dispersions: effects of collective interactions and particle charge // Advances in Colloid and Interface Science. 2007. V. 134. P. 268–278. https://doi.org/10.1016/j.cis.2007.04.026
  79. Kabashin A.V., Meunier M. Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water // J. Appl. Phys. 2003. V. 94. № 12. P. 7941. https://doi.org/10.1063/1.1626793
  80. Mahdieh M.H., Fattahi B. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence // Appl. Surf. Sci. 2015. V. 329. P. 47–57. https://doi.org/10.1016/j.apsusc.2014.12.069
  81. Elsayed K.A., Imam H., Ahmed M.A., Ramadan R. Effect of focusing conditions and laser parameters on the fabrication of gold nanoparticles via laser ablation in liquid // Opt. Laser Technol. 2013. V. 45. № 1. P. 495–502. https://doi.org/10.1016/j.optlastec.2012.06.004
  82. Zhang D., Gökce B., Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications // Chem. Rev. 2017. V. 117. № 5. P. 3990–4103. https://doi.org/10. 1021/acs.chemrev.6b00468
  83. Nastulyavichus A., Kudryashov S., Ionin A., Gonchukov S. Optimization of nanoparticle yield for biomedical applications at femto-, pico- and nanosecond laser ablation of thin gold films in water // Laser Phys Lett. 2022. V. 19. № 4. P. 045603. https://doi.org/10.1088/1612-202X/ac581a
  84. Couairon A., Mysyrowicz A. Femtosecond filamentation in transparent media // Phys. Rep. 2007. V. 441. № 2–4. P. 47–189. https://doi.org/10.1016/j.physrep.2006.12.005
  85. Ionin A.A., Kudryashov S.I., Seleznev L.V. Near-critical phase explosion promoting breakdown plasma ignition during laser ablation of graphite // Physical Review E. 2010. V. 82. № 1. P. 016404. https://doi.org/10.1103/PhysRevE.82.016404
  86. Zheng C., Shen H. Understanding nonlinear optical phenomenon for underwater material ablation by ultrafast laser with high pulse energy // Journal of Manufacturing Processes. 2021. V. 70. P. 331–340. https://doi.org/10.1016/j.jmapro.2021.08.037
  87. Fan C.H., Longtin J.P. Modeling optical breakdown in dielectrics during ultrafast laser processing // Applied optics. 2001. V. 40. № 18. P. 3124–3131. https://doi.org/10.1364/AO.40.003124
  88. Riabinina D., Chaker M., Margot J. Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media // Nanotechnology. 2012. V. 23. № 13. P. 135603. https://doi.org/10.1088/0957-4484/23/13/135603
  89. Barcikowski S., Menendez-Manjon A., Chichkov B. Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow // Appl. Phys. Lett. 2007. V. 91. № 8. P. 083113. https://doi.org/10.1063/1.2773937
  90. Ionin A.A., Kudryashov S.I., Samokhin A.A. Material surface ablation produced by ultrashort laser pulses // Physics–Uspekhi. 2017. V. 60. № 2. P. 149. https://doi.org/10.3367/UFNe.2016.09.037974
  91. Струлёва Е.В., Комаров П.С., Ашитков С.И. Особенности абляции тантала при фемтосекундном лазерном воздействии // Теплофизика высоких температур. 2018. Т. 56. № 5. С. 672–676. https://doi.org/10.31857/S004036440003357-6
  92. Mazhukin V.I., Samokhin A.A., Demin M.M., Shapranov A.V. Explosive boiling of metals upon irradiation by a nanosecond laser pulse // Quantum Electronics. 2014. V. 44. № 4. P. 283. https://doi.org/10.1070/QE2014v044n04ABEH015388
  93. Boyd R.W., Shi Z., De Leon I. The third-order nonlinear optical susceptibility of gold // Optics Communications. 2014. V. 326. P. 74–79. https://doi.org/10.1016/j.optcom.2014.03.005
  94. Smirnov N.A., Kudryashov S.I., Danilov P.A., Rudenko A.A., Gakovic B., Milovanović D., Ionin A.A., Nastulyavichus A.A., Umanskaya S.F. Microprocessing of a steel surface by single pulses of variable width // Laser Phys. Lett. 2019. V. 16. № 5. P. 056002. https://doi.org/10.1088/1612-202X/ab0c85
  95. Danilov P.A., Ionin A.A., Kudryashov S.I., Rudenko A.A, Smirnov N.A., Porfirev A.P., Kuchmizhak A.A., Vitrik O.B., Kovalev M.S., Krasin G.K. Femtosecond laser ablation of thin silver films in air and water under tight focusing // Optical Materials Express. 2020. V. 10. № 10. P. 2717–2722. https://doi.org/10.1364/OME.406054
  96. Ionin A.A, Kudryashov S.I., Makarov S.V., Rudenko A.A., Saltuganov P.N., Seleznev L.V., Sinitsyn D.V., Sunchugasheva E.S. Femtosecond laser fabrication of sub-diffraction nanoripples on wet Al surface in multi-filamentation regime: high optical harmonics effects? // App-l. Surf. Sci. 2014. V. 292. P. 678–681. https://doi.org/10.1016/j.apsusc.2013.12.032
  97. Zhakhovskii V.V., Inogamov N.A., Petrov Y.V., Ashitkov S.I., Nishihara K. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials // Appl. Surf. Sci. 2009. V. 255. № 24. P. 9592–9596. https://doi.org/10.1016/j.apsusc.2009.04.082
  98. Anisimov S.I., Zhakhovskii V.V., Inogamov N.A., Nishihara K., Petrov Y.V. Simulation of the expansion of a crystal heated by an ultrashort laser pulse // Appl. Surf. Sci. 2007. V. 253. № 15. P. 6390–6393. https://doi.org/10.1016/j.apsusc.2007.01.031
  99. Fipps C.R., Turner T.P., Harrison R.F., York G.W., Osborne W.Z., Anderson G.K., Corlis X.F., Haynes L.C., Steele H.S., Spicochi K.C. Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers // J. Appl. Phys. 1998. V. 64. № 3. P. 1083. https://doi.org/10.1063/1.341867
  100. Kudryashov S.I., Zvorykin V.D. Microscale nanosecond laser – induced optical breakdown in water // Phys. Rev. E – Stat. Nonlinear, Soft Matter Phys. 2008. V. 78. № 3. P. 036404. https://doi.org/10.1103/PhysRevE.78.036404
  101. Palik E.D. Handbook of Optical Constants of Solids. V. 1 N.Y.: Academic Press, 2012.
  102. Nastulyavichus A., Kudryashov S., Tolordava E., Rudenko A., Kirilenko D., Gonchukov S., Ionin A.A., Yushina Y. Generation of silver nanoparticles from thin films and their antibacterial properties // Laser Phys Lett. 2022. V. 19. № 7. P. 075603.
  103. Chen Q., Ye Y., Liu J., Wu S., Li P., Liang C. Stability evolution of ultrafine Ag nanoparticles prepared by laser ablation in liquids // J. Colloid Interface Sci. 2021. V. 585. P. 444–451. https://doi.org/10.1016/j.jcis.2020.10.025
  104. Zhang J., Claverie J., Chaker M., Ma D. Colloidal metal nanoparticles prepared by laser ablation and their applications // ChemPhysChem. 2017. V. 18. № 9. P. 986–1006. https://doi.org/10.1002/cphc.201601220
  105. Salavatov N.A., Bol’shakova A.V., Morozov V.N., Kolyvanova M.A., Isagulieva A.K., Dement’eva O.V. Gold nanorods with functionalized organosilica shells: synthesis and prospects of application in tumor theranostics // Colloid J. 2022. V. 84. № 1. P. 93–99. https://doi.org/10.1134/S1061933X22010100
  106. Kruchinin N.Y., Kucherenko M.G. Molecular dynamics simulation of conformational rearrangements in polyelectrolyte macromolecules on the surface of a charged or polarized prolate spheroidal metal nanoparticle // Colloid J. 2021. V. 83. № 5. P. 591–604. https://doi.org/10.1134/S1061933X21050070
  107. Dement’eva O.V., Matsur V.A., Zaikin A.S., Salavatov N.A., Staltsov M.S., Rudoy V.M. Octadecyltrimethylammonium bromide micelles as a template in the seedless synthesis of gold nanorods // Colloid J. 2022. V. 84. № 6. P. 689–695. https://doi.org/10.1134/S1061933X22600312
  108. Petersen S., Barcikowski S. Conjugation efficiency of laser-based bioconjugation of gold nanoparticles with nucleic acids // J. Phys. Chem. C. 2009. V. 113. № 46. P. 19830–19835. https://doi.org/10.1021/jp905962f
  109. Kumar A., Goia D.V. Preparation of concentrated stabilizer-free dispersions of uniform silver nanoparticles // Polyhedron. 2022. V. 219. P. 115804. https://doi.org/10.1016/j.poly.2022.115804
  110. Hedberg J., Blomberg E., Odnevall Wallinder I. In the search for nanospecific effects of dissolution of metallic nanoparticles at freshwater-like conditions: a critical review // Environ. Sci. Technol. 2019. V. 53. № 8. P. 4030–4044. https://doi.org/10.1021/acs.est.8b05012
  111. Labille J., Brant J. Stability of nanoparticles in water // Nanomedicine. 2010. V. 5. № 6. P. 985–998. https://doi.org/10.2217/nnm.10.62
  112. Boinovich L.B. Long – range surface forces and their role in the progress of nanotechnology // Usp. Khim. 2007. V. 76. P. 510–528. https://doi.org/10.1070/RC2007v076n05ABEH003692
  113. Boinovich L.B. DLVO forces in thin liquid films beyond the conventional DLVO theory // Curr. Opin. Colloid Interface Sci. 2010. V. 15. P. 297–302. https://doi.org/10.1016/j.cocis.2010.05.003
  114. Boinovich L.B., Emelyanenko A.M. Forces due to dynamic structure in thin liquid films // Adv. Colloid Interface Sci. 2002. V. 96. P. 37–58.
  115. Kuznetsova E.V., Kuznetsov N.M., Kalinin K.T., Lebedev-Stepanov P.V., Novikov A.A., Chvalun S.N. The role of integrated approach in the determination of nanoparticle sizes in dispersions // Colloid J. 2022. V. 84. P. 704–714. https://doi.org/10.1134/S1061933X22600348
  116. Fathima R., Mujeeb A. Laser induced synthesis and concentration dependent thermo-optical properties of silver–gold alloy nanoparticles // Materials Research Express. 2018. V. 5. № 12. P. 125011. https://doi.org/10.1088/2053-1591/aae19c
  117. Merk V., Rehbock C., Becker F., Hagemann U., Nienhaus H., Barcikowski S. In situ non-DLVO stabilization of surfactant-free, plasmonic gold nanoparticles: Effect of Hofmeister’s anions // Langmuir. 2014. V. 30. № 15. P. 4213–4222. https://doi.org/10.1021/la404556a
  118. Zhang J., Riabinina D., Chaker M., Ma D. Significant stability enhancement of gold colloids via nanosecond laser irradiation // Adv. Sci. Lett. 2011. V. 4. P. 59–64. https://doi.org/10.1166/asl.2011.1199
  119. Lapenna A., Dell’Aglio M., Palazzo G., Mallardi A. “Naked” gold nanoparticles as colorimetric reporters for biogenic amine detection // Colloids Surf. A: Physicochem. Eng. Aspects. 2020. V. 600. P. 124903. https://doi.org/10.1016/j.colsurfa.2020.124903
  120. Dell’Aglio M., De Giacomo A. Plasma charging effect on the nanoparticles releasing from the cavitation bubble to the solution during nanosecond purfacelsed laser ablation in liquid // Appl. Surf. Sci. 2020. V. 515. P. 146031. https://doi.org/10.1016/j.apsusc.2020.146031
  121. Palazzo G., Valenza G., Dell’Aglio M., De Giacomo A. On the stability of gold nanoparticles synthesized by laser ablation in liquids // J. Colloid Interface Sci. 2016. V. 489. P. 47–56. https://doi.org/10.1016/j.jcis.2016.09.017
  122. Mateos H., Picca R.A., Mallardi A., Dell’Aglio M., De Giacomo A., Cioffi N., Palazzo G. Effect of the surface chemical composition and of added metal cation concentration on the stability of metal nanoparticles synthesized by pulsed laser ablation in water // Appl. Sci. 2020. V. 10. № 12. P. 4169. https://doi.org/10.3390/app10124169
  123. Muto H., Yamada K., Miyajima K., Mafune F. Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water // J. Phys. Chem. C. 2007. V. 111. № 46. P. 17221–17226. https://doi.org/10.1021/jp075582m
  124. Sylvestre J.P., Poulin S., Kabashin A.V., Sacher E., Meunier M., Luong J.H.T. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media // J. Phys. Chem. B. 2004. V. 108. № 43. P. 16864–16869. https://doi.org/10.1021/jp047134+
  125. De Anda Villa M., Gaudin J., Amans D., Boudjada F., Bozek J., Evaristo Grisenti R., Lamour E., Laurens G., Macé S., Nicolas C., Papagiannouli I., Patanen M., Prigent C., Robert E., Steydli S., Trassinelli M., Vernhet D., Lévy A. Assessing the surface oxidation state of free-standing gold nanoparticles produced by laser ablation // Langmuir. 2019. V. 35. P. 11859–11871. https://doi.org/10.1021/acs.langmuir.9b02159
  126. Dell’Aglio M., Motto-Ros V., Pelascini F., Gornushkin I.B., De Giacomo A. Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during pulsed laser ablation in liquid (PLAL) for NPs production and consequent considerations on NPs formation // Plasma Sources Sci. Technol. 2019. V. 28. P. 085017. https://doi.org/10.1088/1361-6595/ab369b
  127. Emelyanenko K.A., Emelyanenko A.M., Boinovich L.B. Van der Waals forces in free and wetting liquid films // Adv. Colloid Interface Sci. 2019. V. 269. P. 357–369. https://doi.org/10.1016/j.cis.2019.04.013
  128. Liu J., Hurt R.H. Ion release kinetics and particle persistence in aqueous nano-silver colloids // Environ. Sci. Technol. 2010. V. 44. P. 2169–2175. https://doi.org/10.1021/es9035557
  129. Ma R., Levard C., Marinakos S.M., Cheng Y., Liu J., Michel F.M., Brown G.E., Lowry G.V. Size-controlled dissolution of organic-coated silver nanoparticles // Environ. Sci. Technol. 2012. V. 46. P. 752–759. https://doi.org/10.1021/es201686j
  130. Levard C., Hotze E.M., Lowry G.V., Brown G.E. Environmental transformations of silver nanoparticles: impact on stability and toxicity // Environ. Sci. Technol. 2012. V. 46. P. 6900–6914. https://doi.org/10.1021/es2037405
  131. Khan I., Saeed K., Khan I. Nanoparticles: properties, applications and toxicities // Arab. J. Chem. 2019. V. 12. № 7. P. 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
  132. Khlebtsov N., Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies // Chem. Soc. Rev. 2011 V. 40. № 3. P. 1647–1671. https://doi.org/10.1039/c0cs00018c
  133. Avellan A., Simonin M., McGivney E., Bossa N., Spielman–Sun E., Rocca J.D., Bernhardt E.S., Geitner N.K., Unrine J.M., Wiesner M.R., Lowry G.V. Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome // Nature Nanotechnology. 2018. V. 13. P. 1072–1077. https://doi.org/10.1038/s41565-018-0231-y
  134. Derjaguin B.V., Churaev N.V., Muller V.M. Surface Forces. New York: Consultants Bureau, 1987.
  135. Derjaguin B.V., Landau L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes // Acta Physicochim. URSS. 1941. V. 14. P. 633–660. https://doi.org/10.1016/0079-6816(93)90013-L
  136. Churaev N.V., Sergeeva I.P., Sobolev V.D., Ulberg D.E. Electrokinetic study of polymer surfaces // J. Colloid Interface Sci. 1992. V. 151. P. 490–497. https://doi.org/10.1016/0021-9797(92)90496-9
  137. Brown M.A., Goel A., Abbas Z. Effect of electrolyte concentration on the Stern layer thickness at a charged interface // Angew. Chem. Int. Ed. 2016. V. 55. P. 3790–3794. https://doi.org/10.1002/anie.201512025

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (322KB)
3.

Download (60KB)
4.

Download (70KB)
5.

Download (59KB)
6.

Download (75KB)
7.

Download (98KB)
8.

Download (475KB)
9.

Download (95KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies