SEDIMENTATION OF TITANIUM DIOXIDE SUSPENSION UNDER THE ACTION OF MAGNETIC FLOCCULANTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Magnetic flocculants are synthesized from magnetite (Fe3O4) nanoparticles and ionic and nonionic acrylamide copolymers having different concentrations of ionic units and molecular weights. The synthesis is carried out in two steps: two magnetite samples having different size and surface characteristics are precipitated with ammonia from a mixed aqueous solution of Fe(II) and Fe(III) chlorides; then, the obtained samples are mixed with aqueous solutions of polyacrylamide flocculants. Individual particles of magnetite, copolymers, and magnetic flocculants based thereon are characterized by dynamic light scattering. Effect of the nature and flocculating ability of magnetic flocculants on the process of sedimentation of a titanium dioxide suspension is estimated. Varying the sizes of magnetic nanoparticles and the molecular parameters of acrylamide copolymers in the magnetic flocculant makes it possible to obtain a highly efficient multifunctional flocculant for the selective separation of multicomponent disperse systems.

About the authors

V. E. PROSKURINA

Kazan National Research Technological University, Kazan, Russia

Email: v_proskurina@mail.ru
Россия, 420015, Казань, ул. Карла Маркса, 68

E. S. KASHINA

Kazan National Research Technological University, Kazan, Russia

Email: v_proskurina@mail.ru
Россия, 420015, Казань, ул. Карла Маркса, 68

A. P. RAKHMATULLINA

Kazan National Research Technological University, Kazan, Russia

Author for correspondence.
Email: v_proskurina@mail.ru
Россия, 420015, Казань, ул. Карла Маркса, 68

References

  1. Jumadi J., Kamari A., Hargreaves J.S.J., Yusof N. A review of nano‑based materials used as flocculants for water treatment // International Journal of Environmental Science and Technology. 2020. V. 17. P. 3571–3594.
  2. Kobylinska N., Klymchuk D., Shakhovsky A., Khainakova O., Ratushnyak Y., Duplij V., Matvieieva N. Biosynthesis of magnetite and cobalt ferrite nanoparticles using extracts of “hairy” roots: preparation, characterization, estimation for environmental remediation and biological application // RSC Advances. 2021. V. 11. № 43. P. 26974–26987.
  3. Першина А.Г., Сазонов А.Э., Мильто И.В. Использование магнитных наночастиц в биомедицине // Бюллетень сибирской медицины. 2008. Т. 7. № 2. С. 70–78.
  4. Ghibaudo F., Gerbino E., Copello G.J., Dall’Orto V.C., Gómez-Zavaglia A. Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria // Colloids and Surfaces B: Biointerfaces. 2019. V. 180. P. 193–201.
  5. El-kharrag R., Abdel Halim S.S., Amin A., Greish Y.E. Synthesis and characterization of chitosan-coated magnetite nanoparticles using a modified wet method for drug delivery applications // International Journal of Polymeric Materials and Polymeric Biomaterials. 2019. V. 68. № 1–3. P. 73–82.
  6. Li S.N., Li B., Yu Z.R., Gong L.X., Xia Q.Q., Feng Y., Tang L.C. Chitosan in-situ grafted magnetite nanoparticles toward mechanically robust and electrically conductive ionic-covalent nanocomposite hydrogels with sensitive strain-responsive resistance // Composites Science and Technology. 2020. V. 195. P. 108173.
  7. Курмангажи Г., Тажибаева С.М., Мусабеков К.Б., Левин И.С., Кузин М.С., Ермакова Л.Э., Ю В.К. Получение дисперсных композиций магнетит-бентонит и адсорбция на них казкаина // Коллоидный журнал. 2021. Т. 83. № 3. С. 320–329.
  8. Джардималиева Г.И., Иржак В.И., Братская С.Ю., Майоров В.Ю., Привар Ю.О., Касымова Э.Д., Кыдралиева К.А. Стабилизация наночастиц магнетита в среде гуминовых кислот и исследование их сорбционных свойств // Коллоидный журнал. 2020. Т. 82. № 1. С. 11–17.
  9. Niculescu A.G., Chircov C., Grumezescu A.M. Magnetite nanoparticles: synthesis methods–a comparative review // Methods. 2021. V. 199. P. 16–27.
  10. Ma J., Fu X., Jiang L., Zhu G., Shi J. Magnetic flocculants synthesized by Fe3O4 coated with cationic polyacrylamide for high turbid water flocculation // Environmental Science and Pollution Research. 2018. V. 25. № 26. P. 25955–25966.
  11. Wu W., Wu Z., Yu T., Jiang C., Kim W.S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications // Science and Technology of Advanced Materials. 2015. V. 16. № 2. Article ID 023501.
  12. Wang T., Yang W.L., Hong Y., Hou Y.L. Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae // Chemical Engineering Journal. 2016. V. 297. P. 304–314.
  13. Yu W., Wang C., Wang G., Feng Q. Flocculation performance and kinetics of magnetic polyacrylamide microsphere under different magnetic field strengths // Journal of Chemistry. 2020. V. 2020. Article ID 1579424.
  14. Gu N., Wang C., Zhang J., Shen T. Synthesis and characterization of magnetic poly (acrylamide-co-maleic anhydride) grafted gelatin as a novel heavy metal ions wastewater treatment agent // Desalination and Water Treatment. 2018. V. 116. P. 170–178.
  15. Wang S., Zhang C., Chang Q. Synthesis of magnetic crosslinked starch-graft-poly (acrylamide)-co-sodium xanthate and its application in removing heavy metal ions // Journal of Experimental Nanoscience. 2017. V. 12. № 1. P. 270–284.
  16. Мягченков В.А., Баран А.А., Бектуров Е.А., Булидорова Г.В. Полиакриламидные флокулянты. Казань: Изд-во Казанского гос. технол. ун-та, 1998. 288 с.
  17. Кашина Е.С., Проскурина В.Е., Крупин А.С., Губочкина Д.В., Голдобина С.С., Галяметдинов Ю.Г. Магнитный флокулянт для очистки трансформаторного масла // Вестник технологического университета. Казань. 2021. Т. 24. № 10. С. 5–9.
  18. Мягченков В.А., Булидорова Г.В., Чуриков Ф.И. Оценка адсорбции и десорбции ионогенных и неионогенных (со)полимеров акриламида на каолине по данным о кинетике вторичной флокуляции // Известия Вузов. Серия: Химия и химическая технология. 1997. Т. 40. № 6. С. 41–44.
  19. Гервальд А.Ю., Прокопов Н.И., Ширякина Ю.М. Синтез суперпарамагнитных наночастиц магнетита // Вестник МИТХТ им. МВ Ломоносова. 2010. Т. 5. № 3. С.45–49.
  20. Niculescu A.G., Chircov C., Grumezescu A.M. Magnetite nanoparticles: Synthesis methods–A comparative review // Methods. 2022. V. 199. P. 16−27.
  21. Shchetinin I.V., Seleznev S.V., Dorofievich I.V. Structure and magnetic properties of nanoparticles of magnetite obtained by mechanochemical synthesis // Metal Science and Heat Treatment. 2021. V. 63. № 1. P. 95–100.
  22. Nguyen M.D., Tran H.V., Xu S., Lee T.R. Fe3O4 Nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications // Applied Sciences. 2021. V. 11. № 23. P. 11301.
  23. Cursaru L.M., Piticescu R.M., Dragut D.V., Tudor I.A., Kuncser V., Iacob N., Stoiciu F. The influence of synthesis parameters on structural and magnetic properties of iron oxide nanomaterials // Nanomaterials. 2020. V. 10. № 1. P. 85.
  24. Баран А.А. Полимерсодержащие дисперсные системы / Под ред. А.А. Баран. Киев: Наук. думка, 1986. 204 с.
  25. Липатов Ю.С., Тодосийчук Т.Т., Чорная В.Н. Адсорбция смесей полимеров из разбавленных и полуразбавленных растворов // Успехи химии. 1995. Т. 64. № 5. С. 497–504.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (17KB)
3.

Download (12KB)
4.

Download (7KB)
5.

Download (77KB)
6.

Download (149KB)
7.

Download (174KB)
8.

Download (1MB)

Copyright (c) 2023 В.Е. Проскурина, Е.С. Кашина, А.П. Рахматуллина

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».