REARRANGEMENTS IN THE CONFORMATIONAL STRUCTURE OF POLYELECTROLYTES ON THE SURFACE OF A FLATTENED METAL NANOSPHEROID IN AN ALTERNATING ELECTRIC FIELD

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A mathematical model has been presented for the formation of the conformational structure of chain units in a polyelectrolyte adsorbed on a flattened conducting charged nanospheroid polarized in an external electric field, which harmonically varies at a frequency much lower than the plasma frequency of the nanospheroid metal. Molecular dynamics has been employed to study the rearrangements in the conformational structure of uniformly charged polypeptides adsorbed on the surface of the oppositely charged flattened gold nanospheroid in an external alternating electric field, the strength vector of which varies along the rotation axis of the nanospheroid. One-dimensional density distributions along the rotation axis, as well as radial distributions, have been plotted for atoms of the polypeptides adsorbed on the nanospheroid surface. At a low temperature, a narrow ring-shaped polyelectrolyte fringe is formed in the equatorial region of the flattened metal nanospheroid, and the fringe density increases with the total charge of the nanospheroid and the number of charged units in polyelectrolyte macrochains. At a high temperature, the formed narrow macromolecular ring periodically shifts along the rotation axis of the nanospheroid with redirections of the polarizing electric field vector. The amplitude of the shifts increases with a decrease in the total charge of the nanospheroid and an increase in the fraction of charged units in a polyelectrolyte.

About the authors

N. YU. KRUCHININ

Center of Laser and Informational Biophysics, Orenburg State University, Orenburg, Russia

Email: kruchinin_56@mail.ru
Россия, 460018, Оренбург, пр. Победы 13

M. G. KUCHERENKO

Center of Laser and Informational Biophysics, Orenburg State University, Orenburg, Russia

Author for correspondence.
Email: kruchinin_56@mail.ru
Россия, 460018, Оренбург, пр. Победы 13

References

  1. Szekeres G.P., Montes-Bayón M., Bettmer J., Kneipp J. Fragmentation of proteins in the corona of gold nanoparticles as observed in live cell surface-enhanced Raman scattering // Analytical Chemistry. 2020. V. 92. P. 8553–8560.
  2. Franco D., De Plano L.M., Rizzo M.G. et al. Bio-hybrid gold nanoparticles as SERS probe for rapid bacteria cell identification // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020. V. 224. P. 117394.
  3. Fuller M.A., Köper I. Biomedical applications of polyelectrolyte coated spherical gold nanoparticles // Nano Convergence. 2019. V. 6. P. 11.
  4. Bavelaar B.M., Song L., Jackson M.R. et al. Oligonucleotide-functionalized gold nanoparticles for synchronous telomerase inhibition, radiosensitization, and delivery of theranostic radionuclides // Molecular Pharmaceutics. 2021. V. 18. P. 3820.
  5. Li X., Zhu Q., Xu F. et al. Lateral flow immunoassay with peptide-functionalized gold nanoparticles for rapid detection of protein tyrosine phosphatase 1B // Analytical Biochemistry. 2022. V. 648. P. 114671.
  6. Farcas A., Janosi L., Astilean S. Size and surface coverage density are major factors in determining thiol modified gold nanoparticles characteristics // Computational and Theoretical Chemistry. 2022. V. 1209. P. 113581.
  7. Ma F., Wang Q., Xu Q., Zhang C. Self-assembly of superquenched gold nanoparticle nanosensors for lighting up BACE-1 in live cells // Anal. Chem. 2021. V. 93. P. 15124–15132.
  8. Aljabali A.A.A., Lomonossoff G.P., Evans D.J. CPMV-polyelectrolyte-templated gold nanoparticles // Biomacromolecules. 2011. V. 12. P. 2723–2728.
  9. Nguyen Q.K., Hoang T.H., Bui X.T. et al. Synthesis and application of polycation-stabilized gold nanoparticles as a highly sensitive sensor for molecular cysteine determination // Microchemical Journal. 2021. V. 168. P. 106481.
  10. Chen S., Mock J.J., Hill R.T. et al. Gold nanoparticles on polarizable surfaces as Raman scattering antennas // ACS Nano. 2010. V. 4. P. 6535–6546.
  11. Huang B., Wen J., Yu H. et al. Polyelectrolyte wrapped methylation morpholine-phthalocyanine gold nanorod for synergistic photodynamic therapy and photothermal therapy photodegradation of DNA // Journal of Molecular Structure. 2022. V. 1256. P. 132510.
  12. Lee J.W., Choi S., Heo J.H. Simultaneous stabilization and functionalization of gold nanoparticles via biomolecule conjugation: progress and perspectives // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 42311–42328.
  13. Penninkhof J.J., Moroz A., van Blaaderen A., Polman A. optical properties of spherical and oblate spheroidal gold shell colloids // J. Phys. Chem. C. 2008. V. 112. P. 4146–4150.
  14. Norton S.J., Vo-Dinh T. Spectral bounds on plasmon resonances for Ag and Au prolate and oblate nanospheroids // J. Nanophotonics. 2008. V. 2. P. 029501.
  15. Firoozi A., Khordad R., Mohammadi A. et al. Plasmon-exciton interactions in a spheroidal multilayer nanoshell for refractive index sensor application // Eur. Phys. J. Plus. 2021. V. 136. P. 1073.
  16. Chandra S., Doran J., McCormack S.J. Two step continuous method to synthesize colloidal spheroid gold nanorods // Journal of Colloid and Interface Science. 2015. V. 459. P. 218.
  17. Кручинин Н.Ю., Кучеренко М.Г. Перестройка конформационной структуры полипептидов на поверхности металлического нанопровода во вращающемся электрическом поле: молекулярно-динамическое моделирование // Коллоидный журнал. 2021. Т. 83. № 1. С. 57–65.
  18. Кручинин Н.Ю., Кучеренко М.Г., Неясов П.П. Конформационные изменения однородно заряженных цепей полиэлектролитов на поверхности поляризованной золотой наночастицы: молекулярно-динамическое моделирование и теория гауссовой цепи в поле // Журнал физической химии. 2021. Т. 95. № 2. С. 262–271.
  19. Kruchinin N.Yu., Kucherenko M.G. Rearrangement of the conformational structure of polyampholytes on the surface of a metal nanowire in a transverse microwave electric field // Eurasian Physical Technical Journal. 2021. V. 18. № 1. P. 16–28.
  20. Кручинин Н.Ю., Молекулярно-динамическое моделирование однородно заряженных полипептидов на поверхности заряженной металлической наночастицы в переменном электрическом поле // Коллоидный журнал. 2021. Т. 83. № 3. С. 302–310
  21. Кручинин Н.Ю., Кучеренко М.Г. Молекулярно-динамическое моделирование конформационных изменений макромолекул полиэлектролитов на поверхности заряженной или поляризованной вытянутой сфероидальной металлической наночастицы // Коллоидный журнал. 2021. Т. 83. № 5. С. 557–571.
  22. Kruchinin N.Yu., Kucherenko M.G. Rearrangements in the conformational structure of polyampholytic polypeptides on the surface of a uniformly charged and polarized nanowire: molecular dynamics simulation // Surfaces and Interfaces. 2021. V. 27. P. 101517.
  23. Кручинин Н.Ю., Кучеренко М.Г. Моделирование перестройки конформационной структуры полиамфолитов на поверхности вытянутой сфероидальной металлической наночастицы в переменном электрическом поле // Химия высоких энергий. 2021. Т. 55. № 6. С. 423–435.
  24. Кручинин Н.Ю., Кучеренко М.Г. Конформации однородных полипептидов на поверхности поляризованного вытянутого металлического наносфероида при изменении водородного показателя: молекулярно-динамическое моделирование // Журнал физической химии. 2022. Т. 96. № 3. С. 416–425.
  25. Кручинин Н.Ю., Кучеренко М.Г. Статистическое и молекулярно-динамическое моделирование электрически индуцированных изменений конформационной структуры полиамфолитов на поверхности сплюснутого металлического наносфероида // Коллоидный журнал. 2022. Т. 84. № 2. P. 171–185.
  26. Кручинин Н.Ю., Кучеренко М.Г. Конформационные изменения макромолекул полиэлектролитов на поверхности заряженного металлического вытянутого наносфероида в переменном электрическом поле // Высокомолекулярные соединения (серия А). 2022. Т. 64. № 3. С. 223–238.
  27. Гросберг А.Ю., Хохлов А.P. Статистическая физика макромолекул. М.: Наука, 1989.
  28. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982.
  29. Климов В.В. Наноплазмоника. М.: ФИЗМАТЛИТ, 2009.
  30. Jiang K., Pinchuk P. Temperature and size-dependent Hamaker constants for metal nanoparticles // Nanotechnology. 2016. V. 27. P. 345710.
  31. Genzel L., Kreibig U. Dielectric function and infrared absorption of small metal particles // Z. Phys. B Cond. Matter. 1980. V. 37. P. 93–101.
  32. Kucherenko M.G., Nalbandyan V.M. Formation of the spectral contour width of nanoparticles plasmon resonance by electron scattering on phonons and a boundary surface // Eurasian Physical Technical Journal. 2018. V. 15. № 2(30). P. 49–57.
  33. Phillips J.C., Braun R., Wang W. et al. Scalable molecular dynamics with NAMD // J. Comput. Chem. 2005. V. 26. P. 1781–1802.
  34. MacKerell A.D. Jr., Bashford D., Bellott M. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins // J. Phys. Chem. B. 1998. V. 102. P. 3586–3616.
  35. Huang J., Rauscher S., Nawrocki G. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins // Nature Methods. 2016. V. 14. P. 71–73.
  36. Heinz H., Vaia R.A., Farmer B.L., Naik R.R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12−6 and 9−6 Lennard-Jones potentials // J. Phys. Chem. C. 2008. V. 112. P. 17281–17290.
  37. Walsh T.R. Pathways to structure–property relationships of peptide–materials interfaces: challenges in predicting molecular structures // Acc. Chem. Res. 2017. V. 50. P. 1617–1624.
  38. Verde A.V., Acres J.M., Maranas J.K. Investigating the specificity of peptide adsorption on gold using molecular dynamics simulations // Biomacromolecules. 2009. V. 10. P. 2118–2128.
  39. Cannon D.A., Ashkenasy N., Tuttle T. Influence of solvent in controlling peptide–surface interactions // J. Phys. Chem. Lett. 2015. V. 6. P. 3944–3949.
  40. Bellucci L., Corni S. Interaction with a gold surface reshapes the free energy landscape of alanine dipeptide // J. Phys. Chem. C. 2014. V. 118. P. 11357–11364.
  41. French W.R., Iacovella C.R., Cummings P.T. The influence of molecular adsorption on elongating gold nanowires // J. Phys. Chem. C. 2011. V. 115. P. 18422–18433.
  42. Tang M., Gandhi N.S., Burrage K., Gu Y. Adsorption of Collagen-like peptides onto gold nanosurfaces // Langmuir. 2019. V. 35. P. 4435–4444.
  43. Darden T., York D., Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems // J. Chem. Phys. 1993. V. 98. P. 10089.
  44. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water // J. Chem. Phys. 1983. V. 79. P. 926.
  45. Shankla M., Aksimentiev A. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged grapheme // Nat. Commun. 2014. V. 5. P. 5171.
  46. Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics // J. Molec. Graphics. 1996. V. 14. P. 33–38.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (304KB)
4.

Download (306KB)
5.

Download (1MB)
6.

Download (602KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies