СТРУКТУРА И РЕАКЦИОННАЯ СПОСОБНОСТЬ ЦЕЛЛЮЛОЗЫ ПРИ МИКРОВОЛНОВОМ ВОЗДЕЙСТВИИ
- Авторы: Ананичева С.А1, Алыева А.Б1, Крапивницкая Т.О1, Преображенский Е.И1, Зеленцов С.В1,2, Песков Н.Ю1,2, Глявин М.Ю1
-
Учреждения:
- Институт прикладной физики РАН
- ННГУ им. Н.И. Лобачевского
- Выпуск: Том 59, № 6 (2025)
- Страницы: 375-381
- Раздел: ОБЩИЕ ВОПРОСЫ
- URL: https://journals.rcsi.science/0023-1193/article/view/355977
- DOI: https://doi.org/10.7868/S3034543X25060012
- ID: 355977
Цитировать
Аннотация
Ключевые слова
Об авторах
С. А Ананичева
Институт прикладной физики РАН
Email: bulanova@ipfran.ru
Нижний Новгород, Россия
А. Б Алыева
Институт прикладной физики РАННижний Новгород, Россия
Т. О Крапивницкая
Институт прикладной физики РАННижний Новгород, Россия
Е. И Преображенский
Институт прикладной физики РАННижний Новгород, Россия
С. В Зеленцов
Институт прикладной физики РАН; ННГУ им. Н.И. Лобачевского
Email: zelentsov@chem.unn.ru
Нижний Новгород, Россия
Н. Ю Песков
Институт прикладной физики РАН; ННГУ им. Н.И. ЛобачевскогоНижний Новгород, Россия
М. Ю Глявин
Институт прикладной физики РАННижний Новгород, Россия
Список литературы
- Li B. et al. Coke formation during rapid quenching of volatile vapors from fast pyrolysis of cellulose // Fuel. 2021. Vol. 306. P. 121658.
- Нугманов О.К., Григорьева Н.П., Лебедев Н.А. Структурный анализ травяной целлюлозы // Химия растительного сырья. 2013. № 1. С. 29–37.
- Tiwari A., Sanjog J. Morphological, structural, and thermal properties of cellulose nanocrystals extracted from Indian water chestnut shells (agricultural waste) // Next Materials. 2025. Vol. 8. P. 100653.
- Nomura T., Minami E., Kawamoto H. High-speed camera observation of cellulose fast pyrolysis under infrared irradiation // J Anal Appl Pyrolysis. 2025. Vol. 189. P. 107102.
- Ouerhani M., Largeau J.-F. Thermal conversion of cellulose fiber under slow pyrolysis: Kinetics, thermodynamics and related chemical species // Bioresour Technol Rep. 2025. Vol. 30. P. 102110.
- Song J. et al. Conversion of glucose and cellulose into value-added products in water and ionic liquids // Green Chemistry. 2013. Vol. 15. № 10. P. 2619.
- Azadi P. et al. Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts // Appl. Catal. B. 2012. Vol. 117–118. P. 330–338.
- Liu C. et al. Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems // Catalysts. 2020. Vol. 10. № 9.
- Mettler M.S. et al. Revealing pyrolysis chemistry for biofuels production: Conversion of cellulose to furans and small oxygenates // Energy Environ Sci. 2012. Vol. 5., № 1. P. 5414–5424.
- Dai G. et al. Initial pyrolysis mechanism of cellulose revealed by in-situ DRIFT analysis and theoretical calculation // Combust Flame. 2019. Vol. 208. P. 273–280.
- Zaichenko V.M., Lavrenov V.A., Faleeva Yu.M. Study of the Slow Pyrolysis of Lignin, Hemicellulose, and Cellulose and the Effect of Their Interaction in Plant Biomas // Химия твердого топлива. 2023. № 6. P. 66–74.
- Liu Y. et al. Comparative microwave catalytic pyrolysis of cellulose and lignin in nitrogen and carbon dioxide atmospheres // J Clean Prod. 2024. Vol. 437. P. 140750.
- Collard F.-X., Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin // Renewable and Sustainable Energy Reviews. 2014. Vol. 38. P. 594–608.
- Motasemi F., Afzal M.T. A review on the microwaveassisted pyrolysis technique // Renewable and Sustainable Energy Reviews. 2013. Vol. 28. P. 317–330.
- Namazi A.B., Allen D.G., Jia C.Q. Microwave-assisted pyrolysis and activation ofpulp mill sludge // Biomass Bioenergy. Elsevier Ltd, 2015. Vol. 73. P. 217–224.
- Yin C. Microwave-assisted pyrolysis of biomass for liquid biofuels production // Bioresource Technology. 2012. Vol. 120. P. 273–284.
- Rodriguez A.M. et al. Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS) // ChemistryOpen. 2015. Vol. 4, № 3. P. 308–317.
- St. John P.C. et al. Prediction of organic hemolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost // Nat. Commun. 2020. Vol. 11. № 1. P. 2328.
- Lotliker S.U. et al. Accuracy of the new modified Morse potential energy function for ground and excited states of diatomic molecules // Physics Open. 2023. Vol. 16. P. 100159.
- Neese F. The ORCA program system // WIREs Computational Molecular Science. 2012. Vol. 2. № 1. P. 73–78.
- Гришаева Т.Н., Маслий А.Н. Сравнение производительности квантово-химических программных пакетов Gaussian 09, Orca 2. 8 и Priroda 11 на примере расчета структур комплексов никеля(II) и меди(II) // Вестник Казанского технологического университета. 2012. Vol. 15. № 2. C. 7–11.
- Kalenius E. et al. Size‐ and Structure‐Selective Noncovalent Recognition of Saccharides by Tetraethyl and Tetraphenyl Resorcinarenes in the Gas Phase // Chemistry – A European Journal. 2008. Vol. 14. № 17. P. 5220–5228.
- Krapivnitckaia T. et al. Theoretical and Experimental Demonstration of Advantages of Microwave Peat Processing in Comparison with Thermal Exposure during Pyrolysis // Processes. 2023. Vol. 12. № 1. P. 92
Дополнительные файлы


