Kinetics of Ibuprofen Degradation in Aqueous Solution by the Action of Direct-Current Glow Discharge in Air

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The kinetics of decomposition of ibuprofen in its aqueous solution by the action of atmosphericpressure direct-current discharge in ambient air has been studied. The treated solution served as both the cathode and the anode of the discharge system. Degradation rates and effective degradation rate constants have been determined. Based on these data, the energy yields and degrees of destruction were calculated for various discharge powers (discharge currents). Discharges in a liquid cathode and anode differ little in the energy yields of degradation. But the rates and rate constants of degradation in the liquid cathode are higher than in the liquid anode. Therefore, the complete destruction of ibuprofen in the liquid cathode is achieved within shorter discharge times. A comparison is made of the destruction efficiencies for the cases of solution treatment using glow, dielectric barrier, and pulsed corona discharges.

作者简介

A. Ignatiev

Ivanovo State University of Chemistry and Technology

Email: rybkin@isuct.ru
Ivanovo, 153000 Russia

P. Ivanova

Ivanovo State University of Chemistry and Technology

Email: rybkin@isuct.ru
Ivanovo, 153000 Russia

A. Ivanov

Ivanovo State University of Chemistry and Technology

Email: rybkin@isuct.ru
Ivanovo, 153000 Russia

A. Gushchin

Ivanovo State University of Chemistry and Technology

Email: rybkin@isuct.ru
Ivanovo, 153000 Russia

D. Shutov

Ivanovo State University of Chemistry and Technology

Email: rybkin@isuct.ru
Ivanovo, 153000 Russia

V. Rybkin

Ivanovo State University of Chemistry and Technology

编辑信件的主要联系方式.
Email: rybkin@isuct.ru
Ivanovo, 153000 Russia

参考

  1. Takagi T., Ramachandran C., Bermejo M., Yamashita S., Yu L.X., Amidon G.L. // Mol. Pharmaceutics. 2006. V. 3. P. 631.
  2. Bound J.P., Voulvoulis N. // Chemosphere. 2004. V. 56. P. 1143.
  3. Ternes T.A., Joss A. Human Pharmaceuticals, Hormones and Fragrances. The Challenge of Micropollutants in Urban Water Management. IWA Publishing. London, New York. 2006.
  4. Myers R.L. The 100 Most Important Chemical Compounds – A Reference Guide. Greenwood. 2007. P. 352.
  5. Ansari M., Moussavi G., Ehrampoosh M.H., Giannakis S. // J. Water Process Eng. 2023. V. 51 P. 103371.
  6. Magureanu M., Bilea F., Bradu C., Hong D. // J. Hazard. Mater. 2021. V. 417. P. 125481.
  7. Shutov D.A., Ivanov A.N., Rakovskaya A.V., Smirnova K.V., Manukyan A.S., Rybkin V.V. // J. Phys. D: Appl. Phys. 2020. V. 53. № 28. P. 445202.
  8. Филиппова Н.И., Вайнштейн В.А., Сон А.В., Минина С.А. // Разработка и регистрация лекарственных средств. 2017. № 1. С. 58.
  9. Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. № 1. P. 133.
  10. Marković M., Jović M., Stanković D., Kovačević V., Roglić G., Gojgić-Cvijović G., Manojlović D. // Sci. Total Environ. 2015. V. 505. P. 1148.
  11. Zeghioud H., Nguyen-Tri P., Khezami L., Amrane A., Assadi A.A. // J. Water Proc. Eng. 2020. V. 38. P. 101664.
  12. Shutov D.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // Plasma Chem. Plasma Process. 2023. V. 43. № 3. P. 577.
  13. Shutov D.A., Batova N.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // J. Phys. D: Appl. Phys. 2022. V. 55. № 34. P. 345206.
  14. Bobkova E.S., Smirnov S.A., Zalipaeva Ya.V., Rybkin V.V. // Plasma Chem. Plasma Process. 2014. V. 34. № 4. P. 721.
  15. Шутов D.A., Артюхов A.И, Иванов А.Н., Рыбкин В.В. // Физика плазмы. 2019. Т. 45. № 11. С. 1007.
  16. Aziz K.H.H., Miessner H., Mueller S., Kalass D., Moeller D., Khorshid I., Rashid M.A.M. // Chem. Eng. J. 2017. V. 313. P. 1033.
  17. Zeng J., Yang B., Wang X., Li Z., Zhang X., Lei L. // Chem. Ing. J. 2015. V. 265. P. 282.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (56KB)
3.

下载 (45KB)
4.

下载 (47KB)
5.

下载 (55KB)

版权所有 © А.А. Игнатьев, П.А. Иванова, А.Н. Иванов, А.А. Гущин, Д.А. Шутов, В.В. Рыбкин, 2023

##common.cookie##