Rheological Properties of Gel Systems Based on Gamma-Irradiated Lightly Crosslinked Polyacrylic Acid

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of γ-irradiation of the gelling agent Carbomer 141 G, which is lightly crosslinked polyacrylic acid, on the rheological properties of gels based on the carbomer has been studied. It has been found that an increase in the dose of γ-irradiation in air has a destructive effect on the polymer, leading to a decrease in rheological parameters, such as viscosity, yield strength, and hysteresis area. Irradiation of the carbomer in air with doses greater than 300 kGy leads to a significant decrease or the complete loss of its gel-forming properties. At the same time, irradiation of the carbomer with the same dose in vacuum causes as small a decline in viscosity as 2% compared to the initial systems. It has been established that the optimal gelling agent for obtaining stable antibacterial gels is the carbomer irradiated with a dose of 30 kGy.

作者简介

V. Abramov

Kazan National Research Technological University

Email: sadush@icp.ac.ru
Kazan, 420015 Russia

A. Gataullin

Kazan National Research Technological University

Email: sadush@icp.ac.ru
Kazan, 420015 Russia

S. Bogdanova

Kazan National Research Technological University

Email: sadush@icp.ac.ru
Kazan, 420015 Russia

S. Demidov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Chernogolovka, Moscow oblast, 142432 Russia

R. Kemalov

Kazan (Volga Region) Federal University

Email: sadush@icp.ac.ru
Kazan, 420021 Russia

S. Allayarov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sadush@icp.ac.ru
Chernogolovka, Moscow oblast, 142432 Russia

参考

  1. Анурова М.Н., Бахрушина Е.О., Демина Н.Б. // Химико-фармацевтический журнал. 2015. № 9. С. 39.
  2. Muramatsu M., Kanada K., Nishida A., Ouchi K., Saito N., Yoshida M., Shimoaka A., Ozeki T., Yuasa H., Kanaya Y. // Int J Pharm. 2000. V. 199. P. 77.
  3. Fiume M.M., Heldreth B., Boyer I., Bergfeld W.F., Belsito D.V., Hill R.A., Klaassen C.D., Liebler D.C., Marks J.G.Jr, Shank R.C., Slaga T.J., Snyder P.W., Andersen F.A. // Int. J. Toxicol. 2017. V. 36. P. 59S.
  4. Филиппова О.Е. // Высокомолек. соед. 2000. Т. 42. С. 2328.
  5. Khoury S.H.J., Da Silva M.I.B., Mansur C.R.E., Santos-Oliveira R. // Radiat. Phys. Chem. 2018. V. 145. P. 19.
  6. SilindirM., Özer Y. // PDA J. Pharm Sci. and Tech. 2012. V. 66. P. 184.
  7. Adams I., Davis S.S. // J. Pharm. Pharmacol. 1973. V. 25. P. 640.
  8. Deshpande S., Shirolkar S. //J. Pharm. Pharmacol. 1989. V. 41. P. 197.
  9. Sintzel M.B., Merkli A., Tabatabay C., Gurny R. // Drug Development and Industrial Pharmacy. 1997. V. 23. P. 857.
  10. Шаймухаметова И.Ф., Шигабиева Ю.А., Богданова С.А., Аллаяров С.Р. // Химия высоких энергий. 2020. Т. 54. С. 122.
  11. Allayarov S.R., Shaimukhametova I.F., Confer M.P., Bogdanova S.A., Shigabieva Y.A., Dixon D.A. // Polymer Degradation and Stability. 2021. V. 191. P. 109697.
  12. Шрамм Г. // Основы практической реологии и реометрии / Пер. с англ. И.А. Лавыгина, под ред. В. Г. Куличихина. М.: Колос. 2003. 312 С.
  13. Самченко Ю.М., Ульберг З.Р., Комарский С.А., Ковзун И.Г., Проценко И.Т. // Коллоидный журнал. 2003. Т. 65. С. 87.
  14. Huszank R., Szilágyi E., Szoboszlai Z., Szikszai Z. // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2019. V. 450. P. 364.
  15. Махлис Ф.А. // Атомная энергия. 1969. Т. 27. С. 323.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (122KB)
3.

下载 (80KB)
4.

下载 (27KB)

版权所有 © В.А. Абрамов, А.Р. Гатауллин, С.А. Богданова, С.В. Демидов, Р.А. Кемалов, С.Р. Аллаяров, 2023

##common.cookie##