CARBON DIOXIDE REFORMING OF METHANE IN A DC GLOW DISCHARGE AT ATMOSPHERIC PRESSURE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A DC discharge in a mixture of CO2 and CH4 at atmospheric pressure was studied at different ratios of CO2 and CH4 at the input and different polarities of the applied voltage. It was shown that when the cathode is located in the region of gas supply to the discharge at a gas flow rate ratio at the input of CO2/CH4 = 1, sparking of the discharge is observed in the discharge, which is associated with the intense formation of a solid phase from carbon-containing particles. The degree of decomposition of CH4 is about 95%, and the degree of decomposition of CO2 is within 85–95% and decreases with increasing concentration of CO2 in the mixture. The ratio of concentrations of H2 and CO at the discharge output can be controlled by the ratio of consumption of CO2 and CH4 at the discharge input.

Sobre autores

T. Batukaev

Topchiev Institute of Petrochemical Synthesis of the RAS

Autor responsável pela correspondência
Email: lebedev@ips.ac.ru
Moscow, Russia

Yu. Lebedev

Topchiev Institute of Petrochemical Synthesis of the RAS

Email: lebedev@ips.ac.ru
Moscow, Russia

Bibliografia

  1. Snoeckx R., Bogaerts A. // Chem. Soc. Rev. 2017. 46. 5805.
  2. George A., Shen B., Craven M. et al. // Renewable and Sustainable Energy Reviews. 2021. V. 135. P. 109702.
  3. Trenchev G., Nikiforov A., Wang W. et al. // Chemical Engineering Journal. 2019. V. 362. P. 830–841.
  4. Bongers W., Bouwmeester H., Wolf B. et al. // Plasma Process Polym. 2017. V. 14. № 6. P. 1600126.
  5. Liu C.J., Xu G.H., Wang T. // Fuel Processing Technology. 1999. V. 58. № 2-3. P. 119–134.
  6. Pacheco J., Soria G., Pacheco M. et al. // International journal of hydrogen energy. 2015. V. 40. № 48. P. 17165–17171.
  7. Ikeda A., Hunge Y.M., Teshima K. et al. // Energy Fuels. 2024. V. 38. P. 11918–11926.
  8. Batukaev T.S., Bilera I.V., Krashevskaya G.V., et al. // Plasma. 2023. V. 6. P. 115–126.
  9. Deminsky M., Jivotov V., Potapkin B., Rusanov V. // Pure Appl. Chem. 2002. V. 74. № 3. P. 413–418.
  10. Бабарицкий А.И., Баранов Е.И., Демкин С.А. и др. // Химия Высоких Энергий. 1999. T. 33. № 6. C. 458–463.
  11. Животов В.К., Потапкин Б.В., Русанов В.Д. Энциклопедия низкотемпературной плазмы, Тематический том VIII–1 Химия / Под ред. Лебедева Ю.А., Платэ Н.А., Фортова В.Е. М.: Янус-К, 2005. 4–36 с.
  12. Amin M.H. // Progress Petrochem. Sci. 2018. V. 2. № 2. P. 161–165.
  13. Usman M., Daud W.W., Abbas H.F. // Renewable and Sustainable Energy Reviews. 2015. V. 45. P. 710–744.
  14. Abiev R.Sh., Sladkovskiy D.A., Semikin K.V. et al. // Catalysts. 2020. V. 10. P. 1358.
  15. De Vasconcelos B.R., Lavoie J.M. // Int. J. of Energy Prod. & Mgmt. 2018. V. 3. P. 44.
  16. Курина Л.Н., Аркатова Л.А., Харламова Т.С. и др. // Успехи современного естествознания. 2006. № 4. С. 55.
  17. Hussien A.G.S., Polychronopoulou K. // Nanomaterials. 2022. V. 12. P. 3400.
  18. Muraza O., Galadima A. // Int. J. Energy Res. 2015. V. 39. P. 1196–1216.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).