Photoinduced Room-Temperature Magnetism of Low Curie Temperature Cu–Ni Nanoparticles in Polymer Composites with Rubrene Microcrystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A relation has been established between the decrement of the low-field magnetic spin effect (measured by the luminescence of polymer films of composites with rubrene microcrystals), caused by the addition of magnetic Cu–Ni nanoparticles with a low Curie temperature (TC = 40–60°C), and the photoinduced particle magnetic moment exceeding the dark moment. Based on the study of the temperature dependence of the decrement and its comparison with the thermal demagnetization of the dark magnetic moment, a conclusion was made about a possible mechanism for the photothermal magnetization of nanoparticles

Sobre autores

B. Rumyantsev

nuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: sbb.12@yandex.ru
Moscow, Russia

S. Bibikov

nuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: sbb.12@yandex.ru
Moscow, Russia

V. Leontiev

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: sbb.12@yandex.ru
Moscow, Russia

V. Berendyaev

nuel Institute of Biochemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sbb.12@yandex.ru
Moscow, Russia

Bibliografia

  1. Кожушнер М.А., Гатин А.К., Гришин М.В., Шуб Б.Р., Ким В.П., Хомутов Г.Б., Трахтенберг Л.И. // Физика твердого тела. 2016. Т. 58. № 2. С. 259.
  2. Baibich M.N., Broto J.M., Ferteral A. // Phys. Rev. Lett. 1988. V. 61. P. 2472.
  3. Esquinazi P., Hergert W., Spemann D. et al. // IEEE Transaction on Magnetics. 2013. V. 49. № 8. P. 4668.
  4. Han S.W., Park Y., Hwang Y.H. et al. // Appl. Phys. Lett. 2016. V. 109. P. 252403.
  5. Han S.W., Park Y., Hwang Y.H. et al. // Scientific Reports. 2016. V. 6.
  6. doi: 10.1038/srep38730.
  7. Коваленко В.Ф., Нагаев Э.Л. // Успехи Физических наук. 1986. Т. 148. № 4. С. 561.
  8. Holzrichter J., Macfarlane R., Schawlow A. // Phys. Rev. Lett. 1971. V. 26. P. 652.
  9. Aфанасьев M.M., Компан М.Е., Меркулов И.А. // ЖЭТФ. 1976. Т. 71. С. 2068.
  10. Osteer T., Barker J., Evans R.F.L. et al. // Nature Communications. 2012. V. 3. № 666. https://doi.org/10.1038/ncomms1666
  11. Domracheva N.E., Vorobeva V.E., Gruzdev M.S. et al. // J. Nanoparticle Research. 2015. V. 17. № 83. https://doi.org/10.1007/s11051-015-2890-z
  12. Румянцев Б.М., Берендяев В.И., Пебалк А.В. и др. // Химия Высоких Энергий. 2017. Т. 51. № 5. С. 343.
  13. Kuznetsov O.A., Sorokina O.N., Leontiev V.G. et al. // Journal of Magnetism and Magnetic Materials. 2007. V. 311. P. 204.
  14. Румянцев Б.М., Лесин В.И., Франкевич Е.Л. // Оптика и Спектроскопия. 1975. Т. 38. № 1. С. 89.
  15. Тарасов В.В., Шушин А.А., Франкевич Е.Л. // Химическая Физика. 1995. Т. 14. № 5.
  16. Rumyantsev B.M., Berendyaev V.I., Pebalk A.V. et al. // Rus. Journ. of Physical Chemistry, A. 2019. V. 93. № 9. P. 1835.
  17. Rumyantsev B.M., Bibikov S.B., Berendyaev V.I. et al. in “The Chemistry and Physics of Engineering Materials Modern Analytical Methodologies”, Ed. by A.A. Berlin, R. Joswick and N.I. Vatin (Apple Academic, USA, 2015). V.1. Chapt. 21.
  18. Frankevich E.L., Rumyantsev B.M., Lesin V.I. // J. Luminescence. 1975. V. 11. P. 91.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (57KB)
3.

Baixar (50KB)
4.

Baixar (45KB)
5.

Baixar (70KB)
6.

Baixar (301KB)

Declaração de direitos autorais © Б.М. Румянцев, С.Б. Бибиков, В.Г. Леонтьев, В.И. Берендяев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies