MECHANISM OF PHENYLALANINE DESTRUCTION UNDER THE INFLUENCE OF UV RADIATION AND REACTIVE OXYGEN SPECIES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The degradation of phenylalanine in an acidic aqueous solution (pH 3) with a concentration of 1.33 × 10–3 mol/L under the action of UV radiation of a 253.7 nm mercury lamp, hydroxyl radicals generated by cold plasma of a corona electric discharge, and hydroperoxyl radicals formed in water under the action of pulsed radiation of a hot plasma was studied. The degradation product identified by the fluorescence method is tyrosine. The quantum yields of phenylalanine degradation and tyrosine formation in solutions saturated and depleted in atmospheric oxygen were determined. Possible reaction mechanisms were considered.

Sobre autores

I. Piskarev

D.V. Skobeltsyn Research Institute of Nuclear Physics, Moscow State University named after M.V. Lomonosov

Autor responsável pela correspondência
Email: i.m.piskarev@gmail.com
Rússia, Moscow

Bibliografia

  1. Bruggeman P., Locke B.R., Gardenies H. et al. (41 authors) // Plasma Sources Sci. Technol. 2016. V. 25. 053002.
  2. Locke B.R., Mededovic S., Lukes P. // Plasma Process and Polymers. 2024. e2400207. https://doi.org/10.1002/ppap.202400207
  3. Matthews D.E. // J. Nutrition. 2007. V. 137. 1549S. Шлапакова Т.И., Костин Р.К., Тягунова Е.Е. // Био­органическая химия. 2020. Т. 46. № 5. С. 466.
  4. Griffits H.R., Moller L., Bartosz G. et al. // Mol. Aspects Med. 2002. V. 23. P. 101.
  5. Fitzpatrick P.F. // Biochemistry. 2003. V. 12. № 48. P. 14083.
  6. Hsu J.W., Jahoop F., Butte N.F., Heird W.C. // Pediat. Res. 2011. V. 69. № 4. P. 341.
  7. Srivastava A., Srivastava N., Dohare R.K. // J. Phys. Org. Chem. 2024. https://doi.org/10.1002/poc.4669
  8. Pattison D.I., Rahmanto A.S., Davies M.J. // Photochem. Photobiol. Sci. 2012. V. 11. P. 38.
  9. Weng Y., Su C-J., Jiang H., Chiang C.-W. // Sci. Rep. 2022. V. 8. № 12. 18994. https://doi.org/10.1038/s41598-022-23481-6
  10. Salmahaminati, Roca-Sanjuan D. // ACS Omega. 2024. V. 9. P. 35356.
  11. Scappini F., Capobianco F., Casadei R. et al. // Int. J. of Astrobiol. 2007. V. 6. P. 4.
  12. Jin F., Leitich J., von Sonntag C. // J. of Photochem. Photobiol. A: Chemistry. 1995. V. 85. P. 101.
  13. Kopec K., Ryzko A., Major R. et al. // ACS Omega. 2022. V. 7. 39234.
  14. Tatsuno I., Niimi Y., Tomita M. et al. // Sci. Rep. 2021. V. 11. P. 22310. https://doi.org/10.1038/541598-021-01543-5
  15. Rosenzweig Z., Garcia J., Thompson G.L., Perez L.J. // PLoS ONE. 2024. V. 19. № 11. E0311232.
  16. Piskarev I.M. // High Energy Chem. 2024. V. 58. № 5. P. 480.
  17. Коновалов В.П., Сон Э.Е. Химия плазмы / под ред. Е.М. Смирнова. М. Энергоатомиздат, 1987. Вып. 14. С. 194.
  18. Александров Н.П., Высикайло Ф.И., Исламов Р.Ш. и др. // Теплофизика высоких температур. 1981. Т. 19. № 1. С. 22.
  19. Piskarev I.M. // Res. J. Pharm. Biol. Chem. Sci. 2016. V. 7. № 4. P. 1171.
  20. Пискарев И.М. // Химия высоких энергий. 2016. Т. 50. № 5. С. 449.
  21. Пикаев А.К. Современная радиационная химия. Радиолиз газов и жидкостей. М.: Наука, 1986.
  22. Luo Yu-Ran. Handbook of bond dissociation energies in organic compounds. Boca Raton, London, New York, Washington: CRC Press LLC, 2003. P. 1–94.
  23. Рыбакова Л.П., Алексанян Л.Р., Капустин С.И., Бессмельцев С.С. // Вестник гематологии. 2022. Т. 18. № 4. С. 26.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).