Сорбция гуминовыми веществами ионов металлов из водных растворов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Гуминовые вещества (ГВ), извлекаемые из бурого угля, торфа и других источников, рассматриваются как эффективный и доступный сорбент, используемый для улавливания и связывания ионов тяжелых металлов, опасных для окружающей среды. В представленной статье выполнен обзор современных работ по данной тематике. Описаны типичные структурные характеристики и свойства ГВ, способы их извлечения из бурого угля, торфа, болотных вод и других сред, а также приведены количественные результаты широкого спектра экспериментов по сорбции ионов металлов ГВ. Значительные колебания в измеренной сорбционной емкости ГВ в разных экспериментах, вероятно, возникают не столько из-за вариаций элементного состава и структуры ГВ, извлеченных из разных источников, а связаны с условиями проведения экспериментов, такими как кислотность раствора pH, ионная сила, концентрация ионов металлов и концентрация ГВ в растворе. По порядку величины максимальная сорбционная емкость ГВ сравнима с суммарной концентрацией поверхностных карбоксильных и гидроксильных групп и составляет несколько мили молей ионов металла на грамм ГВ.

Об авторах

З. Р. Исмагилов

ФИЦ угля и углехимии СО РАН

Email: zinfer1@mail.ru
Россия, 650000, Кемерово

В. Г. Смирнов

ФИЦ угля и углехимии СО РАН

Email: smirnovvg@mail.ru
Россия, 650000, Кемерово

Н. В. Малышенко

ФИЦ угля и углехимии СО РАН

Email: profkemsc@yandex.ru
Россия, 650000, Кемерово

С. И. Жеребцов

ФИЦ угля и углехимии СО РАН

Автор, ответственный за переписку.
Email: sizh@yandex.ru
Россия, 650000, Кемерово

Список литературы

  1. Перминова И.В. Анализ, классификация и прогноз свойств гумусовых кислот // Дисс. … д.-ра хим. наук, М.: МГУ, 2000. 359 с.
  2. Русьянова Н.Д. Углехимия. М.: Физматлит, 2000. 316 с.
  3. Лиштван И.И. и др. Физика и химия торфа. М.: Недра, 1989. 304 с.
  4. Qiu J.-W., Tang X., Zheng Ch., Li Ya., Huang Ya. // Marine Environmental Res. 2007. V. 64. P. 563. https://doi.org/10.1016/j.marenvres.2007.06.001
  5. Yang T., Hodson M.E. // Environmental Sci. and Pollution Res. 2018. V. 25. P. 15873. https://doi.org/10.1007/s11356-018-1836-2
  6. Gong G., Li Z., Zhang Y., Ma L., Wang Z., Li R., Liang S., Lu S., Ma L. // J. Molecular Struct. 2022. V. 1260. P. 132766. https://doi.org/10.1016/j.molstruc.2022.132766
  7. Lu X.Q., Johnson W.D. // Sci. Total Environment. 1997. V. 203. P. 199–. https://doi.org/10.1016/S0048-9697(97)00141-1
  8. Жеребцов С.И., Малышенко Н.В., Брюховецкая Л.В., Лырщиков С.Ю., Исмагилов З.Р. // ХТТ. 2015. № 5. С. 30. https://doi.org/10.7868/S0023117715050114
  9. Малышенко Н.В., Жеребцов С.И., Смотрина О.В., Брюховецкая Л.В., Исмагилов З.Р. // ХИУР. 2015. Т. 23. № 4. С. 451. https://doi.org/10.15372/KhUR20150415
  10. Gondar D., Lopez R., Fiol S., Antelo J.M., Arce F. // Geoderma. 2005. V. 126. P. 367. https://doi.org/10.1016/j.geoderma.2004.10.006
  11. Yabuta H., Fukushima M., Kawasaki M., Tanaka F., Kobayashi T., Tatsumi K. // Organю Geochem. 2008. V. 39. P. 1319. https://doi.org/10.1016/j.orggeochem.2008.05.007
  12. Du Q., Sun Zh., Forsling W., Tang H. // Wat. Res. 1999. V. 33. № 3. P. 693. https://doi.org/10.1016/S0043-1354(98)00263-2
  13. Yang T., Hodson M.E. // Sciю Total Environment. 2018. V. 635. P. 1036. https://doi.org/10.1016/j.scitotenv.2018.04.176
  14. Martyniuk H., Wieckowska Ja. // Fuel Proc. Technol. 2003. V. 84. P. 23. https://doi.org/10.1016/S0378-3820(02)00246-1
  15. Alvarez-Puebla R.A., Valenzuela-Calahorro C., Garrido J.J. // Langmuir. 2004. V. 20. P. 3657. https://doi.org/10.1021/la0363231
  16. Paul A., Stosser R., Zehl A., Zwirmann E., Vogt R., Steinberg C. // Environ. Sci. Technol. 2006. V. 40. P. 5897. https://doi.org/10.1021/es060742d
  17. Fakour H., Lin T.-F. // J. Hazardous Materials. 2014. V. 279. P. 569. https://doi.org/10.1016/j.jhazmat.2014.07.039
  18. Chen Y., Senesi N., Schnitzer M. // Soil Sci. Soc. Amer. J. 1977. V. 41. № 2. P. 352. https://doi.org/10.2136/sssaj1977.03615995004100020037x
  19. Palmer N.E., Wandruszka R. // Environ Sci Pollut Res. 2010. V. 17. P. 1362. https://doi.org/10.1007/s11356-010-0322-2
  20. IHSS, 2022. https://humic-substances.org
  21. Swift R.S. Organic matter characterization (Chapter 35). In: D. L. Sparks (Eds.) Methods of soil analysis. Part 3. Chemical methods / Soil Sci. Soc. Amer. Book Ser. 5. Madison, WI. 1996. P. 1018.
  22. Малышенко Н.В., Жеребцов С.И., Вотолин К.С., Захаров Н.С., Шпакодраев К.М., Исмагилов З.Р. // Химия в интересах устойчивого развития. 2022. Т. 30. С. 526. https://doi.org/10.15372/KhUR2022410
  23. Thurman E.M., Malcolm R.L. // Environmental Sci. Technol. 1981. V. 15. № 4. P. 463. https://doi.org/10.1021/es00086a012
  24. Жеребцов С.И., Малышенко Н.В., Смотрина О.В., Брюховецкая Л.В., Исмагилов З.Р. // ХИУР. 2016. Т. 24. № 3. С. 399. https://doi.org/10.15372/KhUR20160316
  25. Новикова Л.Н., Эрдэнэчимэг Р., Пурэвсурэн Б., Вакульская Т.И., Кушнарёв Д.Ф., Рохин А.В. // ХТТ. 2010. № 2. С. 14.
  26. Havelcova M., Mizera J., Sykorova I., Pekar M. // J. Hazardous Materials. 2009. V. 161. P. 559. https://doi.org/10.1016/j.jhazmat.2008.03.136
  27. Barriquello M.F., Saab S.C., Filhoc N.C., Martin-Netod L. // J. Braz. Chem. Soc. 2010. V. 21. № 12. P. 2302. https://doi.org/10.1590/S0103-50532010001200018
  28. Gomes de Melo B.A., Motta F.L., Andrade Santana M.H. // Mater. Sci. Enging. C. 2016. V. 62. P. 967. https://doi.org/10.1016/j.msec.2015.12.001
  29. Будаева А.Д., Золтоев Е.В., Хантургаева Г.И., Жамбалова Б.С. // ХИУР. 2008. Т. 16. С. 143.
  30. Gondar D., López R., Fiol S., Antelo J.M., Arce F. // Geoderma. 2006. V. 135. P. 196. https://doi.org/10.1016/j.geoderma.2005.12.003
  31. Erdogan S., Baysal A., Akba O., Hamamci C. // Polish J. Environ. Stud. 2007. V. 16. № 5. P. 671.
  32. Ferreira J.A., Nascimento O.R., Martin-Neto L. // Environmental Sci. Technol. 2001. V. 35. № 4. P. 761. https://doi.org/10.1021/es0010251
  33. Wershaw R.L. // Environmental Health Perspectives. 1989. V. 83. P. 191. https://doi.org/10.1289/ehp.8983191
  34. Gu Zh., Wang Xi., Gu Xu., Cheng J., Wang L., Dai L., Cao M. // Talanta. 2001. V. 53. P. 1163. https://doi.org/10.1016/s0039-9140(00)00606-8
  35. Merdy P., Guillon E., Aplincourt M. // New J. Chem. 2002. V. 26. P. 1638. https://doi.org/10.1039/b206352b
  36. Zhao P., Zhanbin Huang Zh., Wang P., Wang An. // J. Mol. Liquids. 2023. V. 369. P. 120875. https://doi.org/10.1016/j.molliq.2022.120875
  37. Arslan G., Edebali S., Pehlivan E. // Desalination. 2010. V. 255. P. 117. https://doi.org/10.1016/j.desal.2010.01.006

© З.Р. Исмагилов, В.Г. Смирнов, Н.В. Малышенко, С.И. Жеребцов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах