Sorption of Metal Ions from Aqueous Solutions by Humic Substances

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Humic substances (HSs) extracted from brown coal, peat, and other sources are considered as an
efficient and affordable sorbent used to trap and bind heavy metal ions, which are hazardous to the environment.
This paper provides an overview of modern works on this subject matter. Typical structural characteristics
and properties of HSs and methods for their extraction from brown coal, peat, swamp waters, and other
media are described, and quantitative results of a wide range of experiments on the sorption of metal ions by
HSs are presented. Significant fluctuations in the measured sorption capacity of HSs in different experiments
probably arise not so much due to variations in the elemental composition and structure of HSs extracted
from different sources, but they are associated with experimental conditions, such as the acidity (pH) of solution,
ionic strength, concentration of metal ions, and concentration of HSs in the solution. In terms of the
order of magnitude, the maximum sorption capacity of HSs is comparable to the total concentration of surface
carboxyl and hydroxyl groups, and it amounts to several millimoles of metal ions per gram of HSs

Sobre autores

Z. Ismagilov

Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Science

Email: zinfer1@mail.ru
Kemerovo, 650000 Russia

V. Smirnov

Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Science

Email: smirnovvg@mail.ru
Kemerovo, 650000 Russia

N. Malyshenko

Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Science

Email: profkemsc@yandex.ru
Kemerovo, 650000 Russia

S. Zherebtsov

Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Science

Autor responsável pela correspondência
Email: sizh@yandex.ru
Kemerovo, 650000 Russia

Bibliografia

  1. Перминова И.В. Анализ, классификация и прогноз свойств гумусовых кислот // Дисс. … д.-ра хим. наук, М.: МГУ, 2000. 359 с.
  2. Русьянова Н.Д. Углехимия. М.: Физматлит, 2000. 316 с.
  3. Лиштван И.И. и др. Физика и химия торфа. М.: Недра, 1989. 304 с.
  4. Qiu J.-W., Tang X., Zheng Ch., Li Ya., Huang Ya. // Marine Environmental Res. 2007. V. 64. P. 563. https://doi.org/10.1016/j.marenvres.2007.06.001
  5. Yang T., Hodson M.E. // Environmental Sci. and Pollution Res. 2018. V. 25. P. 15873. https://doi.org/10.1007/s11356-018-1836-2
  6. Gong G., Li Z., Zhang Y., Ma L., Wang Z., Li R., Liang S., Lu S., Ma L. // J. Molecular Struct. 2022. V. 1260. P. 132766. https://doi.org/10.1016/j.molstruc.2022.132766
  7. Lu X.Q., Johnson W.D. // Sci. Total Environment. 1997. V. 203. P. 199–. https://doi.org/10.1016/S0048-9697(97)00141-1
  8. Жеребцов С.И., Малышенко Н.В., Брюховецкая Л.В., Лырщиков С.Ю., Исмагилов З.Р. // ХТТ. 2015. № 5. С. 30. https://doi.org/10.7868/S0023117715050114
  9. Малышенко Н.В., Жеребцов С.И., Смотрина О.В., Брюховецкая Л.В., Исмагилов З.Р. // ХИУР. 2015. Т. 23. № 4. С. 451. https://doi.org/10.15372/KhUR20150415
  10. Gondar D., Lopez R., Fiol S., Antelo J.M., Arce F. // Geoderma. 2005. V. 126. P. 367. https://doi.org/10.1016/j.geoderma.2004.10.006
  11. Yabuta H., Fukushima M., Kawasaki M., Tanaka F., Kobayashi T., Tatsumi K. // Organю Geochem. 2008. V. 39. P. 1319. https://doi.org/10.1016/j.orggeochem.2008.05.007
  12. Du Q., Sun Zh., Forsling W., Tang H. // Wat. Res. 1999. V. 33. № 3. P. 693. https://doi.org/10.1016/S0043-1354(98)00263-2
  13. Yang T., Hodson M.E. // Sciю Total Environment. 2018. V. 635. P. 1036. https://doi.org/10.1016/j.scitotenv.2018.04.176
  14. Martyniuk H., Wieckowska Ja. // Fuel Proc. Technol. 2003. V. 84. P. 23. https://doi.org/10.1016/S0378-3820(02)00246-1
  15. Alvarez-Puebla R.A., Valenzuela-Calahorro C., Garrido J.J. // Langmuir. 2004. V. 20. P. 3657. https://doi.org/10.1021/la0363231
  16. Paul A., Stosser R., Zehl A., Zwirmann E., Vogt R., Steinberg C. // Environ. Sci. Technol. 2006. V. 40. P. 5897. https://doi.org/10.1021/es060742d
  17. Fakour H., Lin T.-F. // J. Hazardous Materials. 2014. V. 279. P. 569. https://doi.org/10.1016/j.jhazmat.2014.07.039
  18. Chen Y., Senesi N., Schnitzer M. // Soil Sci. Soc. Amer. J. 1977. V. 41. № 2. P. 352. https://doi.org/10.2136/sssaj1977.03615995004100020037x
  19. Palmer N.E., Wandruszka R. // Environ Sci Pollut Res. 2010. V. 17. P. 1362. https://doi.org/10.1007/s11356-010-0322-2
  20. IHSS, 2022. https://humic-substances.org
  21. Swift R.S. Organic matter characterization (Chapter 35). In: D. L. Sparks (Eds.) Methods of soil analysis. Part 3. Chemical methods / Soil Sci. Soc. Amer. Book Ser. 5. Madison, WI. 1996. P. 1018.
  22. Малышенко Н.В., Жеребцов С.И., Вотолин К.С., Захаров Н.С., Шпакодраев К.М., Исмагилов З.Р. // Химия в интересах устойчивого развития. 2022. Т. 30. С. 526. https://doi.org/10.15372/KhUR2022410
  23. Thurman E.M., Malcolm R.L. // Environmental Sci. Technol. 1981. V. 15. № 4. P. 463. https://doi.org/10.1021/es00086a012
  24. Жеребцов С.И., Малышенко Н.В., Смотрина О.В., Брюховецкая Л.В., Исмагилов З.Р. // ХИУР. 2016. Т. 24. № 3. С. 399. https://doi.org/10.15372/KhUR20160316
  25. Новикова Л.Н., Эрдэнэчимэг Р., Пурэвсурэн Б., Вакульская Т.И., Кушнарёв Д.Ф., Рохин А.В. // ХТТ. 2010. № 2. С. 14.
  26. Havelcova M., Mizera J., Sykorova I., Pekar M. // J. Hazardous Materials. 2009. V. 161. P. 559. https://doi.org/10.1016/j.jhazmat.2008.03.136
  27. Barriquello M.F., Saab S.C., Filhoc N.C., Martin-Netod L. // J. Braz. Chem. Soc. 2010. V. 21. № 12. P. 2302. https://doi.org/10.1590/S0103-50532010001200018
  28. Gomes de Melo B.A., Motta F.L., Andrade Santana M.H. // Mater. Sci. Enging. C. 2016. V. 62. P. 967. https://doi.org/10.1016/j.msec.2015.12.001
  29. Будаева А.Д., Золтоев Е.В., Хантургаева Г.И., Жамбалова Б.С. // ХИУР. 2008. Т. 16. С. 143.
  30. Gondar D., López R., Fiol S., Antelo J.M., Arce F. // Geoderma. 2006. V. 135. P. 196. https://doi.org/10.1016/j.geoderma.2005.12.003
  31. Erdogan S., Baysal A., Akba O., Hamamci C. // Polish J. Environ. Stud. 2007. V. 16. № 5. P. 671.
  32. Ferreira J.A., Nascimento O.R., Martin-Neto L. // Environmental Sci. Technol. 2001. V. 35. № 4. P. 761. https://doi.org/10.1021/es0010251
  33. Wershaw R.L. // Environmental Health Perspectives. 1989. V. 83. P. 191. https://doi.org/10.1289/ehp.8983191
  34. Gu Zh., Wang Xi., Gu Xu., Cheng J., Wang L., Dai L., Cao M. // Talanta. 2001. V. 53. P. 1163. https://doi.org/10.1016/s0039-9140(00)00606-8
  35. Merdy P., Guillon E., Aplincourt M. // New J. Chem. 2002. V. 26. P. 1638. https://doi.org/10.1039/b206352b
  36. Zhao P., Zhanbin Huang Zh., Wang P., Wang An. // J. Mol. Liquids. 2023. V. 369. P. 120875. https://doi.org/10.1016/j.molliq.2022.120875
  37. Arslan G., Edebali S., Pehlivan E. // Desalination. 2010. V. 255. P. 117. https://doi.org/10.1016/j.desal.2010.01.006

Declaração de direitos autorais © З.Р. Исмагилов, В.Г. Смирнов, Н.В. Малышенко, С.И. Жеребцов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies