Structural Features of Coals and Their Proneness to Spontaneous Combustion
- Authors: Kossovich E.L.1, Epstein S.A.1, Kondratev N.N.1, Nesterova V.G.1, Dobryakova N.N.1
-
Affiliations:
- National University of Science and Technology “MISIS”
- Issue: No 5 (2025)
- Pages: 22-32
- Section: Articles
- URL: https://journals.rcsi.science/0023-1177/article/view/321383
- ID: 321383
Cite item
Abstract
The paper presents the results of an assessment of the influence of coals’ structural features on their proneness to spontaneous combustion. 15 samples of hard coals and anthracite from different deposits of the Russian Federation were used as objects of of study. Based on the deconvolution of coal vitrinite raman spectra, a structural index characterizing the ratio between amorphous and crystallite forms of carbon compounds has been identified. It is noted that this index differs significantly for coals with a close stage of metamorphism. For the studied coals, the activity was determined for two types of cites that are differing in the rate of deactivation when interacting with ozone. The activity of cites of the first type (with a higher deactivation rate when interacting with ozone) grows with an increase in the proportion of crystalline carbon in the coals’ vitrinite, and the activity of cites of the second type (with a low rate of deactivation) generally decreases. The kinetic parameters of the combustion of coals (ignition temperature and activation energy) were estimated according to their thermogravimetric analysis in the air environment. It is shown that with an increase in the proportion of amorphous carbon compounds in vitrinite of coals, both the ignition temperature and the activation energy of coal combustion decrease, which altogether leads to an increase of a risk of spontaneous combustion.
About the authors
E. L. Kossovich
National University of Science and Technology “MISIS”
Author for correspondence.
Email: e.kossovich@misis.ru
Moscow, 119049 Russia
S. A. Epstein
National University of Science and Technology “MISIS”
Email: apshtein@yandex.ru
Moscow, 119049 Russia
N. N. Kondratev
National University of Science and Technology “MISIS”
Email: kondratev.nurgun@gmail.com
Moscow, 119049 Russia
V. G. Nesterova
National University of Science and Technology “MISIS”
Email: malako3@mail.ru
Moscow, 119049 Russia
N. N. Dobryakova
National University of Science and Technology “MISIS”
Email: w.dobryakova@gmail.com
Moscow, 119049 Russia
References
- Веселовский В.С., Алексеева Н.Д., Виноградова Л.П., Орлеанская Г.Л., Терпогосова Е.А. Самовозгорание промышленных материалов. М.: Наука, 1964. 246 с.
- Beamish B.B., Barakat M.A., George J.D.S. // Thermochimica Acta. 2000. V. 362. № 1–2. P. 79. https://doi.org/10.1016/S0040-6031(00)00588-8
- Qi X., Xin H., Wang D., Qi G. // Thermochimica Acta. 2013. V. 571. P. 21. https://doi.org/10.1016/j.tca.2013.08.008
- Beamish B.B., Barakat M.A., St. George J.D. // International Journal of Coal Geology. 2001. V. 45. № 2–3. P. 217. https://doi.org/10.1016/S0166-5162(00)00034-3
- Epshtein S.A., Gavrilova D.I., Kossovich E.L., Adamtsevich A.O. // Gornyi Zhurnal. 2016. № 7. P. 100. https://doi.org/10.17580/gzh.2016.07.22
- Smith M.A., Glasser D. // Fuel. 2005. V. 84. № 9. P. 1161. https://doi.org/10.1016/j.fuel.2004.12.005
- Takarada T., Tamai Y., Tomita A. // Fuel. 1985. V. 64. № 10. P. 1438. https://doi.org/10.1016/0016-2361(85)90347-3
- Zhang Y., Wu J., Chang L., Wang J., Li Z. // Journal of Loss Prevention in the Process Industries. 2013. V. 26. № 6. P. 1221. https://doi.org/10.1016/j.jlp.2013.05.008
- Phillips J., Xia B., Menéndez J.A. // Thermochimica Acta. 1998. V. 312. № 1–2. P. 87. https://doi.org/10.1016/S0040-6031(97)00442-5
- Методика оценки склонности шахтопластов угля к самовозгоранию (введена в действие Приказом Минтопэнерго России от 29.04.1998 № 151) // Госгортехнадзор России, 1997.
- Li B., Zhang H., Sheng C. // Clean Coal Technology and Sustainable Development – Proceedings of the 8th International Symposium on Coal Combustion, 2015. Singapore: Springer Singapore, 2016. № 212029. P. 553. https://doi.org/10.1007/978-981-10-2023-0_75
- Zhang Y., Wang J., Xue S., Wu Y., Li Z., Chang L. // Korean Journal of Chemical Engineering. 2016. V. 33. № 3. P. 862. https://doi.org/10.1007/s11814-015-0230-8
- Epshtein S.A., Kossovich E.L., Kaminskii V.A., Durov N.M., Dobryakova N.N. // Fuel. 2017. V. 199. P. 145. https://doi.org/10.1016/j.fuel.2017.02.084
- Avila C., Wu T., Lester E. // Energy & Fuels. 2014. V. 28. № 3. P. 1765. https://doi.org/10.1021/ef402119f
- Chen G., Ma X., Lin M., Lin Y., Yu Z. // Journal of the Energy Institute. 2015. V. 88. № 3. P. 221. https://doi.org/10.1016/j.joei.2014.09.007
- Zhan J., Wang H., Zhu F., Song S. // International Journal of Clean Coal and Energy. 2014. V. 3. № 2. P. 19. https://doi.org/10.4236/ijcce.2014.32003
- Yi B., Zhang L., Huang F., Xia Z., Mao Z., Ding J., Zheng C. // Energy Conversion and Management. 2015. V. 103. P. 439. https://doi.org/10.1016/j.enconman.2015.06.053
- Boron D.J., Taylor S.R. // Fuel. 1985. V. 64. № 2. P. 209. https://doi.org/10.1016/0016-2361(85)90218-2
- Sen R., Srivastava S.K., Singh M.M. // Indian Journal of Chemical Technology. 2009. V. 16. № 2. P. 103.
- Xuyao Q., Wang D., Milke J.A., Zhong X. // Mining Science and Technology (China). 2011. V. 21. № 2. P. 255. https://doi.org/10.1016/j.mstc.2011.02.024
- Zubíček V., Adamus A. // Fuel Processing Technology. 2013. V. 113. P. 63. https://doi.org/10.1016/j.fuproc.2013.03.031
- Humphreys D.R. A study of the propensity of Queensland coals to spontaneous combustion. 1979. 159 p.
- Arisoy A., Beamish B.B., Yoruk B. // Fuel. 2017. V. 210. P. 352. https://doi.org/10.1016/j.fuel.2017.08.075
- Beamish B.B., Hamilton G.R. // International Journal of Coal Geology. 2005. V. 64. № 1–2. P. 133. https://doi.org/10.1016/j.coal.2005.03.011
- Обвинцева Л.А., Сухарева И.П., Эпштейн С.А., Добрякова Н.Н., Аветисов А.К. // ХТТ. 2017. № 3. P. 25. https://doi.org/10.7868/S0023117717030045
- Epshtein S.A., Gavrilova D., Kossovich E., Nesterova V., Nikitina I., Fedorov S. // AIMS Energy. 2019. V. 7. № 1. P. 20. https://doi.org/10.3934/energy.2019.1.20
- Patrakov Y., Fedyaeva O., Semenova S., Fedorova N., Gorbunova L. // Fuel. 2006. V. 85. № 9. P. 1264. https://doi.org/10.1016/j.fuel.2005.11.005
- Kaminskii V., Kossovich E., Epshtein S.A., Obvintseva L., Nesterova V. // AIMS Energy. 2017. V. 5. № 6. P. 960. https://doi.org/10.3934/energy.2017.6.960.
- Epshtein S.A., Kossovich E.L., Dobryakova N.N., Obvintseva L.A. New approaches for coal oxidization propensity estimation // XVIII International Coal Preparation Congress. Springer, 2016. P. 483. https://doi.org/10.1007/978-3-319-40943-6_73
- Epshtein S.A., Shkuratnik V.L., Kossovich E.L., Agarkov K.V., Nesterova V.G., Gavrilova D.I. // Fuel. 2020. V. 267. P. 117191. https://doi.org/10.1016/j.fuel.2020.117191
- Epshtein S.A., Krasilova V. Al., Dobryakova N.N., Hao J., Kossovich E.L. // Chemical Industry Today. 2023. № 1. P. 45. https://doi.org/10.53884/27132854_2023_1_45
- Epshtein S.A., Kossovich E.L., Minin M.G., Dobryakova N.N., Gavrilova D.I. // Mining informational and analytical bulletin. 2023. № 4. P. 107. https://doi.org/10.25018/0236_1493_2023_4_0_107
- Kossovich E., Epshtein S.A., Krasilova V., Hao J., Minin M. // International Journal of Coal Science & Technology. 2023. V. 10. № 1. P. 20. https://doi.org/10.1007/s40789-023-00578-5
- Hirsch P.B. // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1954. V. 226. № 1165. P. 143. https://doi.org/10.1098/rspa.1954.0245
- Bodzek D., Marzec A. // Fuel. 1981. V. 60. № 1. P. 47. https://doi.org/10.1016/0016-2361(81)90030-2
- Inchaurrondo N.S., Font J. // Molecules. 2022. V. 27. № 7. P. 2151. https://doi.org/10.3390/MOLECULES27072151
- Фиалков А.С. Углеграфитовые материалы. Москва.: Энергия, 1979. 320 с.
Supplementary files
