Changes in the Structure of Asphaltene Molecules in the Process of Initiated Cracking of Tars

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a study of asphaltenes isolated from the liquid products of tar cracking performed at a temperature of 500°C in the presence of didodecanoyl peroxide are presented. The reactions rate constants of the thermal transformations of asphaltenes in the studied tars were calculated. It was found that the reaction rate of asphaltene condensation into solid compaction products depends not only on the initial asphaltene content of tars but also on the molecular structure. Changes in the structural group parameters of tar asphaltenes in the course of initiated cracking were established. It was shown that the destruction of structural blocks without changes in their number in the molecular composition is a distinctive feature of asphaltene cracking in the presence of didodecanoyl peroxide. Averaged asphaltene molecules became more compact due to the destruction of aliphatic substituents and naphthenic rings, and the fraction of condensed aromatic structures in their composition increased significantly.

About the authors

A. V. Goncharov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: mad111-2011@mail.ru
Tomsk, 634055 Russia

E. B. Krivtsov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: john@ipc.tsc.ru
Tomsk, 634055 Russia

References

  1. Jansen T., Guerry D., Leclerc E., Ropars M., Lacroix M., Geantet C., Tayakout-Fayolle M. // Ind. Eng. Chem. Res. 2014. V. 53. P. 15852. https://doi.org/10.1021/ie502242f
  2. Billups W.E., Verma M., Brinson B.E., Vishnyakova E., Alemany L.B., Shammai M. Energy Fuels. 2019. V. 33. P. 8040. https://doi.org/10.1021/acs.energyfuels.9b01298
  3. Капустин В.М., Глаголева О.Ф. // Нефтехимия. 2016. Т. 56. № 1. С. 3. [Petrol. Chemistry, 2016, vol. 56, no. 1, p. 1. https://doi.org/10.1134/S0965544116010035].https://doi.org/10.7868/S0028242116010032
  4. Akimov A.S., Sviridenko N.N. // J. Pet. Sci. Technol. 2022. V. 40. P. 980. https://doi.org/10.1080/10916466.2021.2008973
  5. Chen L., Meyer J., Campbell T., Canas J., Betancour S.S., Dumont H., Forsythe J.C., Mehay S., Kimball S., Hall D.L., Nighswander J., Peters K.E., Zuo J.Y., Mullins O.C. // Fuel. 2018. V. 221. P. 216. https://doi.org/10.1016/j.fuel.2018.02.065
  6. Alimohammadi S., Zendehboudi S., James L. // Fuel. 2019. V. 252. P. 753. https://doi.org/10.1016/j.fuel.2019.03.016
  7. Кривцов Е.Б., Головко А.К. // Химия в интересах устойчивого развития. 2019. Т. 27. № 1. С. 31. https://doi.org/10.15372/KhUR20190105
  8. Гончаров А.В., Кривцов Е.Б. // ХТТ. 2022. № 2. С. 26. [Solid Fuel Chemistry, 2022, vol. 56, no. 2, p. 108. https://doi.org/10.3103/S0361521922020136].https://doi.org/10.31857/S002311772202013X
  9. Сергиенко С.Р., Таимова Б.А., Талалаев Е.И. Высокомолекулярные неуглеводородные соединения нефти. Смолы и асфальтены. М.: Наука, 1979. 269 с.
  10. Дмитриев Д.Е., Головко А.К. // Нефтехимия. 2010. Т. 50. № 2. С. 118. [Petrol. Chemistry, 2010, vol. 50, no. 2, p. 106. https://doi.org/0.1134/S0965544110020040].

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (38KB)

Copyright (c) 2023 А.В. Гончаров, Е.Б. Кривцов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies