Transformation of Heavy Oil Components in the Process of Initiated Cracking

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, the effect of butyl bromide on the thermal transformations of heavy oil from the Karmalskoye field (Republic of Tatarstan) in the presence of an initiating additive, n-butyl bromide, was studied. It was shown that the addition of butyl bromide increased the yield of gasoline and diesel fractions due to the destruction of high-molecular-weight components. It was established that almost all bromine from butyl bromide entered the compaction products upon the cracking of heavy oil, and butyl radicals entered the composition of gaseous products. It was noted that the direction of thermal transformations of hydrocarbons changed in the presence of butyl bromide. As compared to the initial oil, the amount of low-molecular-weight alkanes and isoprenoids increased significantly, the concentration of cyclohexanes and cyclopentanes decreased, and tri-, tetra- and pentacyclic saturated hydrocarbons were completely destroyed.

About the authors

N. N. Sviridenko

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nikita26sviridenko@gmail.com
Tomsk, 634055 Russia

G. S. Pevneva

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: pevneva@ipc.tsc.ru
Tomsk, 634055 Russia

N. G. Voronetskaya

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: voronetskaya@ipc.tsc.ru
Tomsk, 634055 Russia

I. S. Korol

Tomsk Division of Trofimuk Institute of Petroleum–Gas Geology and Geophysics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: korolis@ipgg.sbras.ru
Tomsk, 634055 Russia

References

  1. Нальгиева Х.В., Копытов М.А. // ХТТ. 2022. № 2. С. 34. [Nal’gieva Kh.V., Kopytov M.A. // Solid Fuel Chem. 2022. vol. 56. № 2. P. 116. https://doi.org/10.3103/S036152192202007010.3103/S0361521922020070]https://doi.org/10.31857/S0023117722020074
  2. Mukhamatdinov I.I., Khaidarova A.R., Mukhamatdinova R.E., Affane B., Vakhin. A.V. // Fuel. 2022. V. 312. P. 123005. https://doi.org/10.1016/j.fuel.2021.123005
  3. Уразов Х.Х., Свириденко Н.Н. // ХТТ. 2022. № 2. С. 46. [Urazov K.K., Sviridenko N.N. // Solid Fuel Chem. 2022. vol. 56. № 2. P. 128. https://doi.org/10.3103/S036152192202010010.3103/S0361521922020100]https://doi.org/10.31857/S0023117722020104
  4. Гончаров А.В., Кривцов Е.Б. // Нефтехимия. 2021. Т. 61. № 5. С. 704. [Goncharov A.V., Krivtsov E.B. // Pet. Chem. 2021. vol. 61. № 9. P. 1071. https://doi.org/10.1134/S096554412109006110.1134/S0965544121090061]https://doi.org/10.31857/S0028242121050130
  5. Prado Glaucia H.C., de Klerk A. // Energy Fuels. 2014. V. 28. P. 4458. https://doi.org/10.1021/acs.energyfuels.7b02004
  6. Alemán-Vázquez L.O., Cano-Domínguez J.L., García-Gutiérrez J.L. // Procedia Eng. 2012. V. 42. P. 532. https://doi.org/10.1016/j.proeng.2012.07.445
  7. Певнева Г.С., Воронецкая Н.Г., Свириденко Н.Н., Головко А.К. // Химия в интересах устойчивого развития. 2019. Т. 27. № 1. С. 45. [Pevneva G.S., Voronetskaya N.G., Sviridenko N.N., Golovko A.K. // Chemistry for Sustainable Development. 2019. № 1. P. 36. https://doi.org/10.15372/CSD2019010710.15372/CSD20190107]https://doi.org/10.15372/KhUR20190107
  8. Darouich T.Al., Behar F., Largeau C. // Organic Geochemistry. 2006. V. 37. P. 1130.
  9. Гордадзе Г.Н., Гируц М.В., Кошелев В.Н., Юсупова Т.Н. // Нефтехимия. 2015. Т. 55. № 1. С. 25. [Gordadze G.N., Giruts M.V., Koshelev V.N., Yusupova T.N. // Pet. Chem. 2015. vol. 55. № 1. P. 22. https://doi.org/10.1134/S0965544115010053]https://doi.org/10.7868/S0028242115010050.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (57KB)
3.

Download (56KB)
4.

Download (156KB)

Copyright (c) 2023 Н.Н. Свириденко, Г.С. Певнева, Н.Г. Воронецкая, И.С. Король

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies