Study of the Thermal Stability of Heavy Oil Resins and Asphaltenes by Thermogravimetry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The thermal stability of resins and asphaltenes of naphthenic and methane heavy oils was studied by thermogravimetry. Based on the data of physicochemical methods of analysis, it was shown that the resins and asphaltenes of the test oils had significant differences in molecular weight, elemental composition, and distribution of carbon atoms in structural fragments. Thermogravimetric analysis was performed by heating the samples from 25 to 650°С at a rate of 10 K/min in an atmosphere of argon. It was shown that the maximum rate of weight loss of naphthenic oil resins and asphaltenes occurred at lower temperatures, as compared to similar components of methane oil. The thermal stability of resins and asphaltenes depended on the composition and structural organization of these components due to their formation from oil dispersed systems of various chemical types. It was established that the thermal stability of resins and asphaltenes of methane oil was higher than the thermal stability of similar components of naphthenic oil.

About the authors

G. S. Pevneva

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: pevneva@ipc.tsc.ru
Tomsk, 634055 Russia

N. G. Voronetskaya

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: voronetskaya@ipc.tsc.ru
Tomsk, 634055 Russia

M. A. Kopytov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: kma@ipc.tsc.ru
Tomsk, 634055 Russia

References

  1. Trejo F., Rana M.S., Ancheyta J. // Catalysis Today. 2010. V. 150. P. 272. https://doi.org/10.1016/j.cattod.2009.07.091
  2. Varfolomeev M.A., Galukhin A., Nurgaliev D.K., Kok M.V. // Fuel. 2016. № 186. P. 122. https://doi.org/10.1016/j.fuel.2016.08.042
  3. Корнеев Д.С., Певнева Г.С., Воронецкая Н.Г. // Нефтехимия. 2021. Т. 61. № 2. С. 172. [Korneev D.S., Pevneva G. S., Voronetskaya N.G. // Petroleum Chemistry. 2021. vol. 61. No. 2. P. 152. https://doi.org/10.1134/S0965544121020158]https://doi.org/10.31857/S0028242121020052
  4. Alcazar-Vara L.A., Buenrostro-Gonzalez E. // J. Thermal Analysis and Calorimetry. 2012. V. 107. № 3. P. 1321. https://doi.org/10.1007/s10973-011-1592-8
  5. Поконова Ю.В. Химия высокомолекулярных соединений нефти. Л.: Изд-во Ленингр. ун-та, 1980. 172 с.
  6. Junhui Hao, Yuanjun Che, Yuanyu Tian, Dawei Li, Jinhong Zhang, and Yingyun Qiao // Energy Fuels. 2017. V. 31. P. 1295. https://doi.org/10.1021/acs.energyfuels.6b02598
  7. Певнева Г.С., Воронецкая Н.Г., Копытов М.А. // Химия в интересах устойчивого развития. 2022. Т. 30. № 4 С. 406. [Pevneva G.S., Voronetskaya N.G., Kopytov M.A. // Chemistry for Sustainable Development. 2022. vol. 30. P. 395. https://doi.org/10.15372/CSD2022396]https://doi.org/10.15372/KhUR2022396
  8. Patrakov Yu.F., Kamyanov V.F., Fedyaeva O.N. // Fuel. 2005. V. 84. № 2–3. C. 189. https://doi.org/10.1016/j.fuel.2004.08.021
  9. Иванова Л.В., Сафиева Р.З., Кошелев В.Н. // Вестн. Башкир. ун-та. 2008. Т. 13. № 4. С. 869.
  10. Alvarez E., Marroquín G., Trejo F., Centeno G., Ancheyta J., Díaz J.A.I. // Fuel. 2011. V. 90. P. 3602. https://doi.org/10.1016/j.fuel.2010.11.046

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (79KB)
3.

Download (100KB)
4.

Download (120KB)
5.

Download (89KB)

Copyright (c) 2023 Г.С. Певнева, Н.Г. Воронецкая, М.А. Копытов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies