Influence of Interstructural Bonds in Biomass on the Thermophysical Characteristics of Biochar Produced by Hydrothermal Carbonization and Torrefaction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the temperature of hydrothermal carbonization and torrefaction on the properties of biochar obtained from biomasses (peat and sawdust) and model mixtures of structural components (cellulose, hemicellulose, and lignin) prepared in percentage ratios corresponding to their amounts in real biomass was studied. It was found that the yield of biochar decreased with temperature in both of the processes, whereas the degree of deoxygenation, the amount of carbon in the biochar, and its calorific value increased. A comparison of biochars from biomass and model mixtures was carried out. An assumption on the screening effect of lignin in heat treatment, which reduced the degree of degradation of the structural components of biomasses, was made.

About the authors

K. O. Krysanova

Joint Institute of High Temperatures, Russian Academy of Sciences

Email: kristinakrysanova@gmail.com
Moscow, 125412 Russia

A. Yu. Krylova

Joint Institute of High Temperatures, Russian Academy of Sciences

Email: aykrylova@yandex.ru
Moscow, 125412 Russia

Ya. D. Pudova

Joint Institute of High Temperatures, Russian Academy of Sciences

Email: pudova.y.d@mail.ru
Moscow, 125412 Russia

V. M. Zaichenko

Joint Institute of High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: zaitch@oivtran.ru
Moscow, 125412 Russia

References

  1. Sadaka S., Sharara M., Ashworth A., Keyser P., Allen F., Wright A. // Energies. 2014. V. 7. P. 548.
  2. Gielen D., Boshell F., Saygin D., Bazilian M.D., Wagner N., Gorini R. // Energy. Strateg. Rev. 2019. V. 24. P. 38.
  3. Стратегическая программа исследований по биоэнергетике (Редакция 6, переработанная и дополненная). Технологическая платформа “Биоэнергетика”. Москва, 2021. [Электронный ресурс]. Режим доступа: http://www.tp-bioenergy.ru/upload/ file/spi_bioenergy_2021.pdf (дата обращения 10.08.2022)
  4. Al-Rumaihi A., Shahbaz M., Mckay G., Mackey H., Al-Ansari T. // Renew. Sustain. Energy. Rev. 2022. V. 167. P. 112715.
  5. Chi N.T.L., Anto S., Ahamed T.S., Kumar S.S., Shanmugam S., Samuel M.S., Mathimani T., Brindhadevi K., Pugazhendhi A. // Fuel. 2021. V. 287. P. 119411.
  6. Meyer S., Glaser B., Quicker P. // Environ. Sci. Technol. 2011. V. 45 P. 9473.
  7. Aboulkas A., El Harfi K., El Bouadili A. // Energy. Convers. Manag. 2008. V. 49. P. 3666.
  8. Zaichenko V.M., Knyazeva M.I., Krylova A.Y., Krysanova K.O., Kulikov A.B. // Solid Fuel Chem. 2019. V. 53. P. 159–165. [Химия твердого топлива, 2019, № 3, с. 34. https://doi.org/10.1134/S0023117719030125]https://doi.org/10.3103/S036152191903011X
  9. van der Stelt M.J.C., Gerhauser H., Kiel J.H.A., Ptasinski K.J. // Biomass and Bioenergy. 2011. V. 35. P. 3748.
  10. Chen W.-H., Peng J., Bi X.T. // Renew. Sustain. Energy. Rev. 2015. V. 44. P. 847.
  11. Wang R., Liu S., Xue Q., Lin K., Yin Q., Zhao Z. // Renew. Energy. 2022. V. 183. P. 575.
  12. Kambo H.S., Dutta A. // Renew. Sustain. Energy. Rev. 2015. V. 45. P. 359.
  13. Wang Y., Qiu L., Zhu M., Sun G., Zhang T., Kang K. // Sci. Rep. 2019. V. 9. P. 5535.
  14. Roy P., Dutta A., Gallant J. // Energies. 2018. V. 11. P. 2794.
  15. Sharma H.B., Dubey B.K. // Waste. Manag. 2020. V. 118. P. 521.
  16. Chen D., Gao A., Cen K., Zhang J., Cao X., Ma Z. // Energy. Convers. Manag. 2018. V. 169. P. 228.
  17. Krysanova K.O., Krylova A.Y., Pudova Y.D., Kulikova M.V. // Solid Fuel Chem. 2021. V. 55. P. 306–311. [Химия твердого топлива, 2021, № 5, с. 38. https://doi.org/10.31857/S0023117721050030]https://doi.org/10.3103/S0361521921050037
  18. Yang H., Yan R., Chen H., Lee D.H., Zheng C. // Fuel. 2007. V. 86. P. 1781.
  19. Liu Q., Luo L., Zheng L. // Int. J. Mol. Sci. 2018. V. 19. P. 335.
  20. Funke A., Ziegler F. // Biofuels, Bioprod. Biorefining. 2010. V. 4. P. 160–.
  21. Reza M.T., Lynam J.G., Uddin M.H., Coronella C.J. // Biomass and Bioenergy. 2013. V. 49. P. 86–.
  22. Leijenhorst E.J., Wolters W., van de Beld L., Prins W. // Fuel Process. Technol. 2016. V. 149. P. 96.
  23. George A., Morgan T.J., Kandiyoti R. // Energy & Fuels. 2014. V. 28. P. 6918.
  24. Shrestha B., le Brech Y., Ghislain T., Leclerc S., Carré V., Aubriet F. // ACS Sustain. Chem. Eng. 2017. V. 5. P. 6940.
  25. Hilbers T.J., Wang Z., Pecha B., Westerhof R.J.M., Kersten S.R.A., Pelaez-Samaniego M.R., et al. // J. Anal. Appl. Pyrolysis. 2015. V. 114. P. 197.
  26. Dufour A., Castro-Díaz M., Marchal P., Brosse N., Olcese R., Bouroukba M., et al. // Energy & Fuels. 2012. V. 26. P. 6432.
  27. Khan A.A., de Jong W., Jansens P.J., Spliethoff H. // Fuel Process. Technol. 2009. V. 90. P. 21.
  28. Yadav K., Tyagi M., Kumari S., Jagadevan S. // Bio. Energy. Res. 2019. V. 12. P. 1052.

Copyright (c) 2023 К.О. Крысанова, А.Ю. Крылова, Я.Д. Пудова, В.М. Зайченко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies