Influence of Heat Treatment Conditions on the Composition of Cracking Products of Oil Shale from the Kashpir Deposit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The cracking of oil shale from the Kashpir deposit was studied at various temperatures (425, 450, and 475°C) and process durations (40, 60, 80, and 100 min.). It was shown that the highest yields of liquid products and oils in their composition were achieved at a cracking temperature of 450°C and a duration of 100 min. An increase in the temperature and duration of cracking led to an increase in the concentration of С1–С5 hydrocarbons in the gaseous products by a factor of 2–5. Oils isolated from the liquid products of oil shale cracking consisted of 30–45% polycyclic aromatic hydrocarbons. It was established that an increase in the temperature and duration of cracking led to an increase in the concentration of IBP–360°C fractions in the composition of liquid products.

About the authors

M. V. Mozhayskaya

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: mozhayskaya@ipc.tsc.ru
Tomsk, 634055 Russia

G. S. Pevneva

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: pevneva@ipc.tsc.ru
Tomsk, 634055 Russia

E. B. Krivtsov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: john@ipc.tsc.ru
Tomsk, 634055 Russia

P. V. Pantilov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: 6tinygamer10@gmail.com
Tomsk, 634055 Russia

References

  1. Kang Z., Zhao Y., Yang D. // Appl. Energy. 2020. T. 269. P. 115121.
  2. Lu Y., Wang Y., Zhang J., Wang Q., Zhao Y., Zhang Y. // Energy. 2020. V. 200. P. 117529.
  3. Симонов В.Ф., Каширский В.Г., Левушкина Л.В. // Вестн. Саратовск. ун-та. 2008. № 1. С. 77–81.
  4. Рыжов А.Н., Авакян Т.А., Сахарова Е.А., Маслова Л.К., Смоленский Е.А., Лапидус А.Л. // ХТТ. 2013. № 4. С. 29. [Solid Fuel Chemistry. 2013. vol. 47, no. 2, p. 88–97. https://doi.org/10.3103/S0361521913020092]https://doi.org/10.7868/S0023117713020096
  5. Zendehboudi S., Bahadori A. // Gulf Professional Publishing. 2016. 426 p.
  6. Shawabkeh A.Q., Abdulaziz M. // Oil Shale. 2013. V. 30. № 2. P. 173.
  7. Гюльмалиев А.М., Каирбеков Ж.К., Малолетнев А.С., Емельянова В.С., Малтыкбаева Ж.К. // ХТТ. 2013. № 6. С. 49. [Solid Fuel Chemistry. 2013. vol. 47, no. 6, p. 360–364. https://doi.org/10.3103/S0361521913060037]https://doi.org/10.7868/S0023117713060030
  8. Yarboboev T., Sultanov Sh., Aminov F., Navotova D. // Bull. Sci. Pract. 2020. V. 6. No. 7. P. 226.
  9. Можайская М.В., Сурков В.Г., Копытов М.А., Головко А.К. // Журн. Сиб. фед. ун-та. Химия. 2019. Т. 12. № 3. С. 319.
  10. Певнева Г.С., Воронецкая Н.Г., Гринько А.А., Головко А.К. // Нефтехимия. 2016. Т. 56. № 5. С. 461. [Petroleum Chemistry, 2016, vol. 56, no. 8, p. 690–696. https://doi.org/10.1134/S0965544116080144]https://doi.org/10.7868/S0028242116050154

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (152KB)

Copyright (c) 2023 М.В. Можайская, Г.С. Певнева, Е.Б. Кривцов, П.В. Пантилов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies