Supramolecular Structure of Coals of the Metamorphism Series

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The molecular structure characteristics of brown and hard coals of the metamorphism series were determined using IR spectroscopy. Based on the data of X-ray diffraction analysis and the kinetics of swelling in solvents, their supramolecular structure and the mechanism of molecular diffusion in the organic mass of coals were studied. Relationships between the supramolecular structure and molecular composition indices were established, and the structure evolution in the series of coal metamorphism was considered. It was found that tetrahydrofuran and quinoline molecules penetrated into the bulk of the organic mass of most coals by molecular Fickian diffusion complicated by steric hindrances of the microporous structure.

About the authors

P. N. Kuznetsov

Institute of Chemistry and Chemical Technology, Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; School of Petroleum and Natural Gas Engineering, Siberian Federal University

Email: kuzpn@icct.ru
Krasnoyarsk, 660036 Russia; Krasnoyarsk, 660041 Russia

A. V. Obukhova

Institute of Chemistry and Chemical Technology, Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; School of Petroleum and Natural Gas Engineering, Siberian Federal University

Email: kuzpn@icct.ru
Krasnoyarsk, 660036 Russia; Krasnoyarsk, 660041 Russia

S. S. Kositsyna

Institute of Chemistry and Chemical Technology, Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; School of Petroleum and Natural Gas Engineering, Siberian Federal University

Email: skositsyna@sfu-kras.ru
Россия, 660036, Красноярск; Россия, 660041, Красноярск

L. I. Kuznetsova

Institute of Chemistry and Chemical Technology, Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences

Email: kuzpn@icct.ru
Krasnoyarsk, 660036 Russia

E. S. Kamenskii

Institute of Chemistry and Chemical Technology, Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences

Email: kuzpn@icct.ru
Krasnoyarsk, 660036 Russia

B. Avid

Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences

Author for correspondence.
Email: kuzpn@icct.ru
Ulan Bator, 14200 Mongolia

References

  1. Speight J.G. Handbook of Coal Analysis, 2nd Ed. John Wiley and Sons, 2015. 368 p.
  2. Van Krevelen B.D. Coal. Typology-Chemistry-Physics-Constitution. Amsterdam: Elsevier, 1993. 979 p.
  3. Кричко А.А., Гагарин С.Г., Макарьев С.С. // ХТТ. 1993. № 6. С. 27.
  4. Скрипченко Г.Б. // ХТТ. 2009. № 6. С. 7. [Solid Fuel Chemistry, 2009, vol. 43. № 6, P. 333. https://doi.org/10.3103/S0361521909060019]
  5. Walker P.L., Jr., Verma S.K., Rivara-Utrilla J., Davis A. // Fuel. 1988. V. 67. P. 1615. https://doi.org/10.1016/0016-2361(88)90204-9
  6. Prinz D., Pyckhout-Hintzen W., Littke R. // Fuel 2004. V. 83. P. 547. https://doi.org/10.1016/j.fuel.2003.09.006
  7. Исмагилов З.Р., Шикина Н.В., Журавлева Н.В., Потокина Р.Р., Теряева Т.Н., Керженцев М.А. // ХТТ. 2014. № 4. С. 3. [Solid Fuel Chemistry. vol. 48, № 4, P. 215. https://doi.org/10.3103/S0361521914040053].https://doi.org/10.7868/S0023117714040057
  8. Nie B., Liu X., Yang L., Meng J., Li X. // Fuel. 2015. V. 158. P. 908. https://doi.org/10.1016/j.fuel.2015.06.050
  9. Alexeev A.D., Vasilenko T.A., Ulyanova E.V. // Fuel. 1999. V. 78. P. 635. https://doi.org/10.1016/S0016-2361(98)00198-7
  10. Liu T., Zhao Y., Noraei D. // Front. Earth Sci. 2021. V. 9. P. 1. https://doi.org/10.3389/feart.2021.785913
  11. Лапидус А.Л., Гюльмалиев А.М., Жагфаров Ф.Г., Яркова Т.А. // ХТТ. 2022. № 5. С. 32. [Solid Fuel Chemistry. vol. 56, № 5, P. 342. https://doi.org/10.3103/S0361521922330011]https://doi.org/10.31857/S0023117722050061
  12. Sperling L.H. Introduction to physical polymer science. New Jersey: Wily-InterScience. 2006. 845 p.
  13. Hall P.J., Thomas K.M., Marsh H. // Fuel. 1992. V. 71. P. 1271. https://doi.org/10.1016/0016-2361(92)90053-Q
  14. Ndaji F.E., Thomas K.M. // Fuel. 1995. V. 74. P. 842. https://doi.org/10.1016/0016-2361(95)00011-S
  15. Ndaji F.E., Thomas K.M. // Fuel. 1993. V. 72. P. 1525. https://doi.org/10.1016/0016-2361(93)90010-Y
  16. Aida T. // Energy and Fuels. 1991. V. 5. P. 79. https://doi.org/10.1021/ef00025a013
  17. Кузнецов П.Н. // ХТТ. 2013. № 6. С. 19. [Solid Fuel Chemistry, 2013, vol. 47, No. 6, P. 329. https://doi.org/10.3103/S0361521913060062]https://doi.org/10.7868/S0023117713060066
  18. Кузнецов П.Н. // ХТТ. 1998. № 3. С. 53.
  19. Кузнецов П.Н., Кузнецова Л.И. // ХTТ. 2008. № 6. С. 57. [Solid Fuel Chemistry, 2008, vol. 42, No. 6, P. 373. https://doi.org/10.3103/S0361521913060062]
  20. Саранчук В.И., Айруни А.Т., Ковалев К.Е. Надмолекулярная организация, структура и свойства угля. Киев: Наук. думка. 1988. 192 с.
  21. Lu L., Sahajwalla V., Kong C., Harris D. // Carbon. 2001. V. 39. P. 1821. https://doi.org/10.1016/S0008-6223(00)00318-3
  22. Королев Ю.М., Гладун Т.Г., Гагарин С.Г. // ХТТ. 2003. № 2. С. 14.
  23. Sobkowiak M., Painter P. // Fuel. 1992. V. 71. P. 1105. https://doi.org/10.1016/0016-2361(92)90092-3
  24. Alcaniz-Monge J., Cazorla-Amoros D., Linares-Solano A. // Fuel. 2001. V. 80. P. 41. https://doi.org/10.1016/S0016-2361(00)00057-0
  25. Solomon P.R., Carangelo R.M. // Fuel. 1988. V. 67. P. 949. https://doi.org/10.1016/0016-2361(88)90095-6
  26. Supalukhari S., Larkins F.P., Redlich P., Jackson W.R. // Fuel Process. Technol. 1989. V. 23. P. 47. https://doi.org/10.1016/0378-3820(89)90043-X
  27. Guillén M.D., Iglesias M.J., Domínguez A., Blanco C.G. // Fuel. 1995. V. 74. P. 1595. https://doi.org/10.1016/0016-2361(95)00139-V
  28. Li K., Khanna R., Zhang J., Barati M., Liu Z., Xu T., Yang T. // Energy & Fuels. 2015. V. 29. P. 7178. https://doi.org/10.1021/acs.energyfuels.5b02064
  29. Sfihi H., Legrand A.P. In: Advanced Methodologies in Coal Characterization. Amsterdam: Elsevier, 1990. P. 115.
  30. Кузнецов П.Н., Avid Budeebazar // Информ. Бюлл. Международное сотрудничество: Россия-Монголия о деятельности Российского фонда фундаментальных исследований Специальный выпуск. 2022. № 2. С. 36. URL: https://www.rfbr.ru/rffi/ru/ books/o_2130405 (дата обращения: 20.12.2022).
  31. Yoshida T., Maekawa Y. // Fuel Proc. Tech. 1987. V. 15. P. 385. https://doi.org/10.1016/0378-3820(87)90060-9
  32. Журавлева Н.В., Хабибулина Е.Р., Исмагилов З.Р., Потокина Р.Р., Созинов С.А. // ХИУР. 2016. Т. 24. С. 355. https://doi.org/10.15372/KhUR20160310
  33. Korolev Yu.M., Gagarin S.G. // Solid Fuel Chemistry. 2003. № 3. P. 11.
  34. Haenel M.W. // Fuel. 1992. V. 71. I. 11. P. 1211. https://doi.org/10.1016/0016-2361(92)90046-Q
  35. Popova A.N., Fedorova N.I., Ismagilov Z.R. // Coke and Chemistry. 2020. V. 63. P. 57. https://doi.org/10.3103/S1068364X20020088
  36. Скрипченко Г.Б., Никифорова Д.В. // ХТТ. 1996. № 3. С. 31.
  37. Solum M.S., Pugmire R.J., Grant D.M. // Energy & Fuels. 1989. V. 3. P. 187. https://doi.org/10.1021/ef00014a012

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (139KB)
3.

Download (157KB)
4.

Download (110KB)
5.

Download (474KB)
6.

Download (88KB)
7.

Download (60KB)
8.

Download (160KB)
9.

Download (142KB)

Copyright (c) 2023 П.Н. Кузнецов, А.В. Обухова, С.С. Косицына, Л.И. Кузнецова, Е.С. Каменский, Б. Авид

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies