Synthesis and Study of the Properties of Porous Carbon–Carbon Nanocomposites with Nitrogen-Containing Carbon Nanofibers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of synthesizing carbon–carbon nanocomposites with nanofibers embedded in a carbon matrix by two-stage dehydrochlorination (under the action of alkali followed by carbonization) of a carbon-chain chloropolymer has been shown. Chlorinated polyvinyl chloride was used as the initial chloropolymer, and nitrogen-containing carbon nanofibers (N-CNFs) were used as a nanoscale component. The structure of the resulting nanocomposites was examined by electron microscopy and the texture parameters were studied using low-temperature nitrogen adsorption–desorption. The introduction of N-CNFs into the carbon matrix and the activation of the resulting carbon–carbon nanocomposite in an atmosphere of CO2 contributed to the formation of a micro- and mesoporous material with a specific surface area of ~1100 m2/g. It was shown that the resulting nanocomposites were characterized by high energy capacity and energy efficiency when tested as electrodes of electrochemical supercapacitors.

About the authors

Yu. G. Kryazhev

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: carbonfibre@yandex.ru
644040, Omsk, Russia

O. Yu. Pod”yacheva

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: pod@catalysis.ru
630090, Novosibirsk, Russia

M. V. Trenikhin

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: tremv@yandex.ru
644040, Omsk, Russia

T. I. Gulyaeva

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: tangul-8790@ihcp.ru
644040, Omsk, Russia

I. V. Anikeeva

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: irina_anikeeva@inbox.ru
644040, Omsk, Russia

Yu. M. Vol’fkovich

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: yuvolf40@mail.ru
119071, Moscow, Russia

A. Yu. Rychagov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: rychagov69@mail.ru
119071, Moscow, Russia

References

  1. Sanjines R., Abad M.D., Vâju Cr., Smajda R., Mionic M., Magrez A. // Surf. and Coat. Techn. 2011. V. 206. I. 4. P. 727. https://doi.org/10.1016/j.surfcoat.2011.01.025
  2. Zhong R., Sels B. // Appl. Cat. B: Env. 2018. V. 236. P. 518.https://doi.org/10.1016/j.apcatb.2018.05.012
  3. Zou W., Gao B., Ok Yo., Dong L. // Chemosphere. 2019. V. 218. P. 845.https://doi.org/10.1016/j.chemosphere.2018.11.175
  4. Peng Y., Chen Sh. // Green Ener.&Envir.2018. V. 3. I. 4. P. 335.https://doi.org/10.1016/j.gee.2018.07.006
  5. Koyama S., Haniu H., Osaka K., Koyama H., Kuroiwa N., Endo M., Kim Y. A., Hayashi T. // Small. 2006. V. 2. I. 12. P. 1406.https://doi.org/10.1002/smll.200500416
  6. Patel D., Kim H.-B., Dutta S. D., Ganguly K., Lim K.-T. // Materials. 2020. V. 13. I. 7. P. 1679.https://doi.org/10.3390/ma13071679
  7. Vijaya Bhaskar Reddy A., Madhavi V., Ahmad, A., Madhavi G. // Green Energy and Technology. 2021. Springer. Singapore. P. 246. https://doi.org/10.1007/978-981-15-6699-8_1
  8. Noamani S., Niroomand S., Rastgar M., Sadrzadeh M. // Npj Clean Water. 2019. V. 2. № 20.https://doi.org/10.1038/s41545-019-0044-z
  9. Jiang X., Wu Y., MaoX., Cui X., Zhu L. // Sensors and Actuators. B: Chemical. V. 153. I. 1. P. 158. https://doi.org/10.1016/j.snb.2010.10.023
  10. Su D.S., Schlogl R. // Chem. Eur. Spec. Iss.: MPI EnerChem. V. 3. I. 2. P. 136. https://doi.org/10.1002/cssc.200900182
  11. Dresselhaus M., Terrones M. // Proc. IEEE. 2013. V. 101. P. 1522.https://doi.org/10.1109/JPROC.2013.2261271
  12. Li Q., Chen L., Li X., Zhang J., Zhang X., Zheng K., Fang F., Zhou H., Tian X. // Compos. A Appl. Sci. Manuf. 2016. V. 82. P. 214. https://doi.org/10.1016/j.compositesa.2015.11.014
  13. An H., Feng B., Su S. // Carbon. 2009. V. 47. I. 10. P. 2396. https://doi.org/10.1016/j.carbon.2009.04.029
  14. Li X., Li X., Zhou J., Dong Y., Xie Zh, Caia W., Zhang Ch. // RSC Adv. 2017. I. 69. P. 43965. https://doi.org/10.1039/C7RA08602D
  15. Zhang Y., Sun J., Tan J., Ma Ch.-H., Luo Sh., Li W., Liu Sh. // Fuel. 2021. V. 305. P. 121622. https://doi.org/10.1016/j.fuel.2021.121622
  16. Zhang B., Chen R., Yang Z., Chen Y., Zhou L., Yuan Y. // Intern. J. Hydr. Ener. 2019. V. 44. I. 59. P. 31094. https://doi.org/10.1016/j.ijhydene.2019.10.045
  17. Krasnikova I., Mishakov I., Vedyagin A., Krivoshapkin P., Korneev D. // Comp. Comm. 2018. V. 7. P. 65–68. https://doi.org/10.1016/j.coco.2018.01.002
  18. Yang Y.-S., Wang C.-Y., Chen M.-M., Shi Zh.-Q., Zheng J.-M. // J. Solid St. Chem. 2010. V. 183. I. 9. P. 2116. https://doi.org/10.1016/j.jssc.2010.07.011
  19. Khan M., Tiehu L., Hussain A., Raza A. // Diam. And Rel. Mater. 2022. V. 126. P. 109077. https://doi.org/10.1016/j.diamond.2022.109077
  20. Аникеева И.В., Кряжев Ю.Г., Солодовниченко В.С., Дроздов В.А. // ХТТ. 2012. № 4. С. 70. [Solid Fuel Chemistry. 2012. V. 46. № 4. P. 271. doi: 10.3103/S0361521912040039]
  21. Кряжев Ю.Г., Вольфкович Ю.М., Мельников В.П., Рычагов А.Ю., Тренихин М.В., Солодовниченко В.С., Запевалова Е.С., Лихолобов В.А. // Физ. хим. поверхности и защиты материалов. 2017. Т. 53. № 3. С. 266. [Prot. of Met. and Phys. Chem. of Surf. 2017. V. 53. № 2. С. 268. doi: 10.1134/s2070205117020150] href='https://doi.org/10.7868/s0044185617030111' target='_blank'>https://doi.org/10.7868/s0044185617030111
  22. Кряжев Ю.Г., Солодовниченко В.С. // ХТТ. 2012. № 5. С. 54. [Solid Fuel Chemistry. 2012. V. 46. № 5. P. 330. doi: 10.3103/S0361521912050060]
  23. Podyacheva O.Yu., Ismagilov Z.R. // Catal. Today. 2015. V. 249. P. 12. https://doi.org/10.1016/j.cattod.2014.10.033
  24. Shalagina A.E., Ismagilov Z.R., Podyacheva O.Yu., Kvon R.I., Ushakov V.A. // Carbon. 2007. V. 45. P. 1808–1820. https://doi.org/10.1016/j.carbon.2007.04.032
  25. Podyacheva O.Y., Cherepanova S.V., Romanenko A.I., Kibis L.S., Svintsitskiy D.A., Boronin A.I., Stonkus O.A., Suboch A.N., Puzynin A.V., Ismagilov Z.R. // Carbon. 2017. V. 122. P. 475. https://doi.org/10.1016/j.carbon.2017.06.094
  26. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. // Pure Appl. Chem. IUPAC Technical Report.2015. V. 89. I. 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
  27. Inagaki M., Konno H., Tanaike O. // J. of Pow. Sour. 2010. V. 195. I. 24. P. 7880. https://doi.org/10.1016/j.jpowsour.2010.06.036
  28. Conway B. // Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer Science & Business Media. 1999. 685 p. https://doi.org/10.1007/978-1-4757-3058-6
  29. Bagotsky V.S., Skundin A.M., Volfkovich Yu.M. // Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors.JhonWiely& Sons Inc. Publisher. N.J. USA. 2015. 372 p.
  30. Volfkovich Yu.M., Bograchev D.A., Rychagov A.Yu., Sosenkin V.E., Chaika M.Yu. // J. Solid State Electrochem. 2015. V. 19. P. 19: 2771–2779. https://doi.org/10.1007/s10008-015-2804-0
  31. Volfkovich Yu.M., Bograchev D.A., Mikhalin A.A., Ba-gotsky V.S. // Solid State Electrochem.2014. V. 18. P. 1351. https://doi.org/10.1007/s10008-013-2271-4
  32. Подъячева О.Ю., Субоч А.Н., Яшник С.А., Сальников А.В., Черепанова С.В., Кибис Л.С., Сименюк Г.Ю., Романенко А.И., Исмагилов З.Р. // Журн. структурной химии. 2021. Т. 62. № 5. С. 827. https://doi.org/10.26902/JSC_id72907
  33. Langendahl P.-A., Roby H., Potter S., Cook M. // EnergyRes. Soc. Sci. 2019. V. 58. P. 101277. https://doi.org/10.1016/j.erss.2019.101277
  34. Chapaloglou S., Nesiadis A., Iliadis P., Atsoniosa K., Nikolopoulosa N., Grammelisa P., Yiakopoulosb Ch., Antoniadisb I., Kakaras E. // Appl. Energy. 2019. V. 238. https://doi.org/10.1016/j.apenergy.2019.01.102
  35. Вольфкович Ю.М. // Электрохимия. 2021. Т. 57. № 4. С. 197–238. https://doi.org/10.31857/S0424857021040101
  36. Volfkovich Yu.M., Filippov A.N., Bagotsky V.S. // Springer Publisher. London. 2014. https://doi.org/10.1007/978-1-4471-6377-0
  37. Volfkovich Yu.M., Sakars A.V., Volinsky A.A. // Int. J. Nanotechnology. 2005. V. 2. P. 292. https://doi.org/10.1504/IJNT.2005.008066

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (31KB)
3.

Download (1MB)
4.

Download (1MB)
5.

Download (192KB)
6.

Download (87KB)
7.

Download (61KB)

Copyright (c) 2023 Ю.Г. Кряжев, О.Ю. Подъячева, М.В. Тренихин, Т.И. Гуляева, И.В. Аникеева, Ю.М. Вольфкович, А.Ю. Рычагов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies