No 6 (2025)

Vegetable growing

Current state of production of cultivated mushrooms

Surikhina T.N., Ivanova M.I., Devochkina N.L.

Abstract

The article presents and analyzes the indicators of the production of cultivated mushrooms. Mushroom cultivation is a promising area in agribusiness, which can bring significant profits and at the same time solve a number of pressing problems of our time. With the growing demand for environmentally friendly and nutritious products, mushrooms are becoming an excellent option for sustainable agriculture. Increasing mushroom production can also significantly increase their market availability. This, in turn, will help improve food security in the country by providing the population with high-quality and affordable products. Mushrooms are an excellent source of protein and other nutrients, which makes them an important element of the diet. Over the past 20 years, global mushroom production has grown at an average annual growth rate of 8.26%. The mushroom market has grown significantly in recent years. Industrial mushroom farming is actively developing in the Russian Federation. In recent years, 85 enterprises have been opened. The average annual growth rate of fresh mushroom production was 11.7%. Champignons de and oyster mushrooms (ostrea fungus) are mainly grown in Russia. The purpose of this study is to analyze the state of production of cultivated mushrooms in the Russian Federation and in the world in terms of food security. The literature for this review was obtained from research articles, review articles, and book chapters published in journals (indexed by SCOPUS, SCIE, and ESCI) or by publishers (e.g., Elsevier). First, a pool of literature was created from all relevant works related to the field of review from reputable sources such as Elibrary.ru , Google Scholar, ScienceDirect, Taylor & Francis, Wiley, Springer Nature, etc.
Potato and vegetables. 2025;(6):25-29
pages 25-29 views

The effect of mineral and organic fertilizers on the agronomic characteristics of Chinese cabbage

Yanchenko E.V., Mudrechenko S.L., Yanchenko A.V., Ivanova M.I.

Abstract

Chinese cabbage is an economically significant crop that is gaining popularity in our country. The reduction in imports of Chinese cabbage to Russia indicates an increase in domestic production and the provision of domestic products to the market. The cultivation of Chinese cabbage is a promising area of agricultural business due to the high market value of products, stable consumer demand, high yields (up to 60 t/ha), as well as the ability to harvest twice a year in the open ground. Nevertheless, a significant part of the Chinese cabbage consumed in Russia still comes from abroad. The agronomic characteristics of Chinese cabbage depend significantly on the environment. In the Russian Federation, the yield of Chinese cabbage heads is 40-61 t/ha. High yields are impossible without balanced plant nutrition. Nitrogen removal of 1 ton of green mass is 1.6-3.0 kg, phosphorus – 1.0-1.4 kg, potassium – 3.1-5.1 kg. The optimal rate of organic fertilizers for Peking cabbage is 10-30 t/ha. The heads contain 4.6-5.9% of dry matter, 17-26 mg% of vitamin C, 0.4-0.9% of reducing sugars, 400-1100 mg / kg of crude weight of nitrates. During the period of head formation, up to 3 top dressing per week with a 1.5% solution of calcium nitrate is recommended against marginal leaf burn. Compared with mineral fertilizers, the use of organic fertilizers can significantly improve yields and commercial yields by 10.1% and 35.6%, respectively, and increase the nutrient content in the soil. The application of organic fertilizers can significantly increase the content of vitamin C (by 11.1%), soluble sugar (by 19.2%) and soluble protein (by 8.8%) and reduce the content of nitrates and nitrites with a decrease to 19.0% and 20.9%, respectively.
Potato and vegetables. 2025;(6):30-35
pages 30-35 views

Processing

Fortification of food products with cryopowders from vegetable crops

Yankovskaya V.S., Dunchenko N.I.

Abstract

The article presents the results of assessing the prospects of enriching food with cryopowders using the example of yoghurts with pumpkin, turnip and carrot cryopowders. The work used elements of qualimetric forecasting: expert qualimetry, an information matrix model, the author's qualimetric scale, as well as standard methods for determining vitamins C and K, carotene; the content of trace elements was determined on a two-beam atomic absorption spectrometer Shimadzu AA-7000. The article provides scientific evidence for the choice of the type of drying and degree of grinding of vegetable raw materials for yogurt enrichment. It has been established that the most preferred type of vegetable raw materials in yogurt production technology in terms of adaptability and the possibility of forming a set of requirements for finished products enriched with functional food ingredients (FPI) is cryopowder (40 points), followed by freeze–dried powder (31 points). The results of a study of the FPI content in pumpkin, turnip and carrot cryopowders showed that the introduction of a small amount of cryopowders can ensure the functional properties of products: 15% of the recommended daily intake of vanadium is provided by the introduction of 0.23, 0.28 and 0.61% of pumpkin, carrot and turnip cryopowders, respectively; silicon – 0.54, 1.33 and 2.20% of turnip and pumpkin cryopowders. and carrots, respectively; carotenes – 0.72 and 2.43% of carrot and pumpkin cryopowders, respectively; vitamin C – 4.82% of turnip cryopowder. Evaluation of the taste compatibility of yogurt samples with cryopowders showed that the yogurt base with cryopowders received a higher score compared to the control, and the highest scores were obtained by yogurt samples enriched with pumpkin (1.4%), turnip (4.9%) and carrot (2.2%) cryopowders. These samples had a pronounced rich taste and aroma of the introduced vegetables, a thicker consistency and the absence of syneresis, and samples with pumpkin and carrot cryopowders had a characteristic color. A method of applying cryopowders in the production of yogurt is proposed – adding pre-mixed cryopowders with pasteurized cream or milk to a fermented yogurt clot, followed by mixing and bottling in consumer containers. The results obtained show the prospects of using the studied cryopowders as sources of FPI in the technologies of fortified dairy products, as well as as natural thickeners and flavor, aroma and color-forming agents.
Potato and vegetables. 2025;(6):36-40
pages 36-40 views

A new approach to the selection of components for food fortification

Yankovskaya V.S., Dunchenko N.I.

Abstract

The article presents the results of a generalization of 15 years of scientific research experience in the field of a systematic approach to the selection of plant components as sources of functional food ingredients (FPI) in the creation of functional dairy products with fillers. The proposed methodological approach to choosing the name and source of the FPI in the design of functional products includes generally accepted methods and quality tools, as well as methods of qualimetric forecasting. The aim of the work is to develop a methodological approach to the selection of components for food fortification, based on the study and consideration of a set of additional requirements. The new approach includes an algorithm for identifying and examining all internal and external requirements for the designed products and their production processes necessary for an informed choice of the name of the FPI and its source. The article reveals the content of three key stages of the proposed approach: the formation of sets of requirements for regulatory documentation for functional products.; drawing up a list of preferred FPI for product enrichment and developing a methodological approach to choosing the name of the FPI. The features of the regulatory requirements for functional products and FPI are considered. Mandatory regulatory requirements are given. The list of FPI names with the most complete regulatory framework containing all the necessary requirements for the selected FPI is given (attribution to ingredients with unambiguously proven functional properties, the recommended physiological daily intake rate approved in the regulatory documentation, the minimum amount of FPI in 100 g or 100 cm3of products necessary to ensure its functional properties). This list is preferable for choosing the FPI during product development. The requirements for the content of the listed FPI in the finished product are given, which are necessary to ensure the legality of the use of the term «functional product» in relation to the designed product. The basic prescription and technological factors are considered when choosing the name of the FPI and its source. To implement all the above elements of the methodological approach, when selecting components for food fortification, methods are provided to identify and take into account all the factors influencing the choice of the name and source of the FPI.
Potato and vegetables. 2025;(6):41-16
pages 41-16 views

Breeding and seed growing

Genetic resistance of tomato to the ToBRFV virus: overcoming of known resistance genes by the pathogen and prospects for breeding

Gavrish S.F., Redichkina T.A., Buts A.V., Samoilenko P.A.

Abstract

Tomato brown wrinkle virus ToBRFV is one of the most dangerous pathogens threatening the global tomato production. This review article presents the biological characteristics of ToBRFV, its evolutionary origin, routes of dissemination (mechanical contact, seeds, pollinators) and diagnostic methods. The genomic organization of viruses, the range of host plants, characteristic symptoms, epidemiological features are analyzed. Integrated control strategies, including phytosanitary and chemical methods, are discussed. Effective methods for disinfection of seeds and surfaces. A comparative analysis of ToBRFV with related tobamoviruses was carried out: tobacco mosaic virus (TMV), tomato mosaic virus (ToMV), tomato mottled mosaic virus (ToMMV), revealing differences in pathogenicity, symptoms and the ability to overcome resistance genes. Particular attention is paid to breeding and genetic control strategies. The molecular mechanisms of the virus overcoming the known resistance genes Tm-1, Tm-2 and Tm-2² are analyzed in detail. Including mutations in the N82K movement protein, which allows the pathogen to bypass the immune response mediated by the Tm-2² gene. The latest scientific data on the identification and characterization of new genetic sources of resistance to ToBRFV in the genomes of wild species of the genus Solanum(S. pimpinellifolium, S. habrochaites, S. chilense, S. ochranthum), promising for use in breeding programs, are summarized. Both traditional breeding methods and modern molecular genetic approaches are considered, including modification of R genes and identification of QTL loci responsible for resistance. It is emphasized that effective and sustainable protection against ToBRFV requires an integrated approach combining strict phytosanitary measures, reliable monitoring systems based on highly sensitive diagnostic methods and the introduction into production of new tomato hybrids with long-term, preferably polygenic, resistance.
Potato and vegetables. 2025;(6):47-53
pages 47-53 views

Melon: nutritional value, origin, biology, cultivars

Bykovskiy Y.A., Bagrov R.A.

Abstract

Information is provided on the nutritional and dietary value of melon (Cucumis melo), its importance in human nutrition. Melon fruits contain 82-96% water and 4-18% soluble solids, which consist of 90% soluble carbohydrates – sugars. In addition to sugars, cultivated melon varieties contain a number of substances that are valuable to the human body: 0.6 mg% dietary fiber, 0.2 mg% free organic acids; vitamins and trace elements. There are two geographical centers of origin of cultivated melons – African and Asian. India should be noted as the source of primitive melon forms with high resistance to diseases. It was the Indian forms of melon that could be the ancestors of modern cultural forms. Melon came to Russia through the Black Sea colonies of Greece, as well as from Central Asia and Turkey through Astrakhan. The first historical information about melon culture in Russia dates back to the beginning of the XVI century. It quickly spread along the river banks in the North Caucasus, the Lower Volga region, and the Don, reaching Voronezh and Kursk. The first mentions of growing near Moscow on manure-insulated soil date back to the beginning of the XVI century. The main industrial melon crops are concentrated in the south of Russia. Among the domestic varieties in demand by agricultural producers, it is worth noting the varieties of the Bykovsky melon breeding experimental station (Duna, Slavia, Osen, Idillia, Garmonia), the Institute of Irrigated Vegetable Growing and Melon Growing (Lada, Selchanka), the Agricultural Company «POISK» (Efiopka, Torpeda, Tsarskaya, Mlada, Fortuna). Of all melon crops, melon is the most demanding of heat. She is also very light-loving, especially sensitive to shading during the initial period of development. Melon plants need the dryness of the surrounding air and a dry soil surface, but they do not tolerate soil drought well. The most important specialized melon pests are the melon fly and melon aphid, fungal diseases (powdery mildew, peronosporosis, Fusarium wilt, anthracnose and ascochytosis) and bacterial diseases (angular leaf spot and various fruit rot).
Potato and vegetables. 2025;(6):54-60
pages 54-60 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».