Electronic Structure and Relative Stabilities of 10- and 12-Vertex. Closoand Nido-Heteroborane Clusters of Ga, Ge, and As Elements


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A DFT method with the B3LYP functional and the 6-311++G(d,p) diffuse basis set is used to predict geometries, relative stabilities, electronic structures, and the bonding of closo- and nido-GamBnmHn2−, GemBnmHnm−2, and AsmBnmHn2
m−2
(n = 10, 12 and m = 1, 2) Clusters are obtained by replacing BH with isolobal GaH, GeH+, and AsH2+ fragments, keeping the same skeleton electron pairs (SEP). Based on the polyhedral skeletal electron pairs theory (PSEPT), closo and nido structures are predicted and can be of significant interest for experimentalists working in the field of heteroboranes. Different cluster stabilities are studied according to Gimarc′s and Williams′ rules, where our calculations show that the monosubstituted clusters deviate from these rules, giving rise to open structures. As2B8Hn2+ as 10-vertex structures lead to nido-type clusters, however, GemBnmHnm−2 (n = 10, 12 and m = 1, 2) give rise to closo isomers with close energies. All optimized structures exhibit large HOMO–LUMO gaps suggesting a good kinetic stability, thus predicting their isolation and characterization.

About the authors

S. Ababsa

Laboratoire de Chimie appliquée et Technologie des Matériaux; Unité de Recherche de Chimie de l′Environnement et Moléculaire Structurale

Email: b.zouchoune@univ-oeb.dz
Algeria, Oum el Bouaghi; Constantine

B. Zouchoune

Laboratoire de Chimie appliquée et Technologie des Matériaux; Unité de Recherche de Chimie de l′Environnement et Moléculaire Structurale

Author for correspondence.
Email: b.zouchoune@univ-oeb.dz
Algeria, Oum el Bouaghi; Constantine

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.