Phenomenon of the ousting of a monatomic ion from its hydration shell in flat nanopores


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure and stability of hydrate shells of singly charged sodium and chlorine ions are studied by computer simulations under the conditions of nanoscopic flat pores with the use of the previously proposed detailed force field model containing polarization interactions, transferring charge effects as well as manybody interactions of covalent type. It is found that the effect of ousting a monatomic ion from its hydration shell, which has previously been observed by independent authors in bulk vapor, is also reproduced persistently in nanoscopic pores. Whereas the ousting of the ion from its hydration shell in bulk vapor is accompanied by the loss of thermodynamic stability of the system and at sufficiently high vapor pressure causes avalanche-like condensation, under the conditions of a nanoscopic pore the thermodynamic stability is retained. The obtained data show that the ousting of the ion from its hydration shell is a universal phenomenon covering the majority, if not all, of monatomic and, possibly, some of molecular ions.

About the authors

S. V. Shevkunov

Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: shevk54@mail.ru
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.