Micromechanical Model of a Polycrystalline Ferroelectrelastic Material with Consideration of Defects
- 作者: Semenov A.S.1
-
隶属关系:
- Peter the Great Saint Petersburg Polytechnic University
- 期: 卷 60, 编号 6 (2019)
- 页面: 1125-1140
- 栏目: Article
- URL: https://journals.rcsi.science/0021-8944/article/view/161687
- DOI: https://doi.org/10.1134/S002189441906018X
- ID: 161687
如何引用文章
详细
Constitutive equations for describing the nonlinear behavior of a polycrystalline ferroelectroelastic material are proposed which take into account the dissipative movement of domain walls, the presence of point defects, and their effect on switching processes in the temperature range not accompanied by phase transitions. The method of two-level homogenization is used to describe the behavior of a polycrystalline ferroelectroelastic material at the macro-level. Accounting for defects in the micromechanical model of ferroelectroelastic materials has significantly improved the predictive ability of the model under multiaxial loading. Comparison of the results of computations with experimental data on dielectric hysteresis curves and switching surfaces under nonproportional loading of PZT-4D, PZT-5H, and BaTiO3 polycrystalline piezoelectric ceramics shows that the proposed model has good prediction accuracy.
作者简介
A. Semenov
Peter the Great Saint Petersburg Polytechnic University
编辑信件的主要联系方式.
Email: semenov.artem@googlemail.com
俄罗斯联邦, Saint Petersburg, 195251
补充文件
