Asymptotic Formula for the Spectrum of the Linear Problem Describing Periodic Polymer Flows in an Infinite Channel


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we study a new rheological model (a modification of the well-known Pokrovskii–Vinogradov model) which is shown by computational experiments to take into account the nonlinear effects occurring during melt flows and polymer solutions in regions with complex boundary geometry. For the case where the main solution is an analogue of the Poiseuille flow in an infinite flat channel (viscoelastic polymer fluid considered), an asymptotic formula is obtained for the distribution of points of the spectrum of the linear problem. It is shown that small perturbations have the additional property of periodicity in the variable that runs along the axis of the channel.

作者简介

A. Blokhin

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

编辑信件的主要联系方式.
Email: blokhin@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

D. Tkachev

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: blokhin@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

A. Yegitov

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: blokhin@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2018