Asymptotic Formula for the Spectrum of the Linear Problem Describing Periodic Polymer Flows in an Infinite Channel


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we study a new rheological model (a modification of the well-known Pokrovskii–Vinogradov model) which is shown by computational experiments to take into account the nonlinear effects occurring during melt flows and polymer solutions in regions with complex boundary geometry. For the case where the main solution is an analogue of the Poiseuille flow in an infinite flat channel (viscoelastic polymer fluid considered), an asymptotic formula is obtained for the distribution of points of the spectrum of the linear problem. It is shown that small perturbations have the additional property of periodicity in the variable that runs along the axis of the channel.

Sobre autores

A. Blokhin

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Autor responsável pela correspondência
Email: blokhin@math.nsc.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

D. Tkachev

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: blokhin@math.nsc.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

A. Yegitov

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: blokhin@math.nsc.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2018