Mathematical Modeling of Failure Process of AlMg2.5 Alloy in High and Very High Cycle Fatigue


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Prediction of the endurance limit in the high and very high cycle loading range (102−1010) is an important problem in aircraft engine construction and high-speed rail transport. It involves the development of models and their experimental verification taking into account damage evolution stages and fatigue crack growth in a damaged medium. A damage evolution model that takes into account the kinetics of defects and microplasticity effects was proposed. The model was used to study the process of fatigue failure of an AlMg2.5 structural alloy. The model parameters were identified and verified using experimental data on static, dynamic, and fatigue loading, as well as tests at various temperatures. The numerical results were used to construct the Wöhler curve, which was found to agree well with experimental data in the range of high cycle fatigue. The duality effect of the S-N curve was described. A computational experiment was performed to study the effect of dynamic loading on the fatigue strength. It was found that the fatigue limit depends weakly on the preliminary dynamic strain, which was confirmed by experimental data. Various mathematical packages and numerical methods for solving the constructed system of differential equations were compared. The Adams method and its modifications were shown to be optimal for the numerical integration of the problem under consideration. Wolfram Mathematica was found to be a preferred software package for numerical solution. The convergence of the numerical solution was investigated.

Об авторах

D. Bilalov

Institute of Continuous Media Mechanics, Ural Branch

Автор, ответственный за переписку.
Email: ledon@icmm.ru
Россия, Perm, 614013

Yu. Bayandin

Institute of Continuous Media Mechanics, Ural Branch

Автор, ответственный за переписку.
Email: buv@icmm.ru
Россия, Perm, 614013

O. Naimark

Institute of Continuous Media Mechanics, Ural Branch

Автор, ответственный за переписку.
Email: naimark@icmm.ru
Россия, Perm, 614013

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».