Free convection effects on a vertical cone with variable viscosity and thermal conductivity


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The present paper deals with a flow of a viscous incompressible fluid along a heated vertical cone, with due allowance for variations of viscosity and thermal diffusivity with temperature. The fluid viscosity is assumed to be an exponential function of temperature, and the thermal diffusivity is assumed to be a linear function of temperature. The governing equations for laminar free convection of the fluid are transformed into dimensionless partial differential equations, which are solved by a finite difference method with the Crank–Nicolson implicit scheme. Dependences of the flow parameters on the fluid viscosity and thermal conductivity are obtained.

作者简介

G. Palani

Department of Mathematics

编辑信件的主要联系方式.
Email: gpalani32@yahoo.co.in
印度, Chennai, Tamil Nadu, 600039

E. Lalith Kumar

Department of Mathematics

Email: gpalani32@yahoo.co.in
印度, Kancheepuram, Tamil Nadu

K.-Y. Kim

Department of Mechanical Engineering

Email: gpalani32@yahoo.co.in
韩国, Incheon, 402-751

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016