Quantum anomalous Hall effect in magnetically modulated topological insulator/normal insulator heterostructures


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We theoretically study how magnetic modulation can be used to manipulate the transport properties of heterostructures formed by a thin film of a three-dimensional topological insulator sandwiched between slabs of a normal insulator. Employing the kp scheme, in the framework of a continual approach, we argue that electron states of the system are spin-polarized when ultrathin magnetic insertions are incorporated into the film. We demonstrate that (i) the spin-polarization magnitude depends strongly on the magnetic insertion position in the film and (ii) there is the optimal insertion position to realize quantum anomalous Hall effect, which is a function of the material parameters, the film thickness and the topological insulator/normal insulator interface potential. For the heterostructure with a pair of symmetrically placed magnetic insertions, we calculate a phase diagram that shows a series of transitions between distinct quantum regimes of transverse conductivity. We provide consistent interpretation of recent experimental findings in the context of our results.

Sobre autores

V. Men’shov

National Research Center Kurchatov Institute; Tomsk State University

Autor responsável pela correspondência
Email: vnmenshov@mail.ru
Rússia, Moscow, 123182; Tomsk, 634050

V. Tugushev

National Research Center Kurchatov Institute; Tomsk State University

Email: vnmenshov@mail.ru
Rússia, Moscow, 123182; Tomsk, 634050

E. Chulkov

Tomsk State University; Departamento de Física de Materiales, Facultad de Ciencias Químicas; Saint Petersburg State University

Email: vnmenshov@mail.ru
Rússia, Tomsk, 634050; San Sebastián, Basque Country, 20080; St. Petersburg, 198504

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2016