Parametric instability of oscillations of a vortex ring in a z-periodic Bose condensate and return to the initial state


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The dynamics of deformations of a quantum vortex ring in a Bose condensate with the periodic equilibrium density ρ(z) = 1 − ϵ cos z has been considered in the local induction approximation. Parametric instabilities of normal modes with the azimuthal numbers ±m at the energy integral E near the values \(E_m^{\left( p \right)} = 2m\sqrt {{m^2} - 1} /p\), where p is the order of resonance, have been revealed. Numerical experiments have shown that the amplitude of unstable modes with m = 2 and p = 1 can sharply increase already at ϵ ~ 0.03 to values about unity. Then, after several fast oscillations, fast return to a weakly perturbed state occurs. Such a behavior corresponds to the integrable Hamiltonian Hσ(E2(1)E)(|b+|2 + |b-|2)-ϵ(b+b- + b+*b-*)+u(|b+|4 + |b-|4)+w|b+|2|b-|2 for two complex envelopes b±(t). The results have been compared to parametric instabilities of the vortex ring in the condensate with the density ρ(z, r) = 1 − r2 − αz2, which occur at α ≈ 8/5 and 16/7.

Авторлар туралы

V. Ruban

Landau Institute for Theoretical Physics

Хат алмасуға жауапты Автор.
Email: ruban@itp.ac.ru
Ресей, Chernogolovka, Moscow region, 142432

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2017