Weak antilocalization in a three-dimensional topological insulator based on a high-mobility HgTe film
- Authors: Savchenko M.L.1,2, Kozlov D.A.1,2, Kvon Z.D.1,2, Mikhailov N.N.1, Dvoretsky S.A.1
-
Affiliations:
- Rzhanov Institute of Semiconductor Physics, Siberian Branch
- Novosibirsk State University
- Issue: Vol 104, No 5 (2016)
- Pages: 302-308
- Section: Condensed Matter
- URL: https://journals.rcsi.science/0021-3640/article/view/159689
- DOI: https://doi.org/10.1134/S0021364016170112
- ID: 159689
Cite item
Abstract
The anomalous magnetoresistance (AMR) caused by the weak antilocalization effects in a three-dimensional topological insulator based on a strained mercury telluride film is experimentally studied. It is demonstrated that the obtained results are in a good agreement with the universal theory of Zduniak, Dyakonov, and Knap. It is found that the AMR in the bulk band gap is far below that expected for the system of Dirac fermions. Such a discrepancy can assumingly be related to a nonzero effective mass of Dirac fermions. The filling of energy bands in the bulk is accompanied by a pronounced increase in the AMR. This is a signature of the weak coupling between the surface and bulk charge carriers.
About the authors
M. L. Savchenko
Rzhanov Institute of Semiconductor Physics, Siberian Branch; Novosibirsk State University
Author for correspondence.
Email: SavchenkoMaximL@gmail.com
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090
D. A. Kozlov
Rzhanov Institute of Semiconductor Physics, Siberian Branch; Novosibirsk State University
Email: SavchenkoMaximL@gmail.com
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090
Z. D. Kvon
Rzhanov Institute of Semiconductor Physics, Siberian Branch; Novosibirsk State University
Email: SavchenkoMaximL@gmail.com
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090
N. N. Mikhailov
Rzhanov Institute of Semiconductor Physics, Siberian Branch
Email: SavchenkoMaximL@gmail.com
Russian Federation, Novosibirsk, 630090
S. A. Dvoretsky
Rzhanov Institute of Semiconductor Physics, Siberian Branch
Email: SavchenkoMaximL@gmail.com
Russian Federation, Novosibirsk, 630090
Supplementary files
