Effect of a magnetic field on the intermediate phase in Mn1–xFexSi: Spin-liquid versus fluctuations scenario
- Authors: Demishev S.V.1,2, Lobanova I.I.1,2, Bogach A.V.1, Glushkov V.V.1,2, Ivanov V.Y.1, Ischenko T.V.1, Samarin N.A.1, Sluchanko N.E.1, Gabani S.3, Čižmár E.4, Flachbart K.3, Chubova N.M.5, Dyadkin V.A.5,6, Grigoriev S.V.5
-
Affiliations:
- Prokhorov General Physics Institute
- Moscow Institute of Physics and Technology (State University)
- Institute of Experimental Physics
- P.J. Šafárik University in Košice
- Petersburg Nuclear Physics Institute
- Swiss–Norwegian Beamlines at the European Synchrotron Radiation Facility
- Issue: Vol 103, No 5 (2016)
- Pages: 321-327
- Section: Condensed Matter
- URL: https://journals.rcsi.science/0021-3640/article/view/159118
- DOI: https://doi.org/10.1134/S0021364016050027
- ID: 159118
Cite item
Abstract
We report results of the magnetic field influence on the chiral spin liquid state in Mn1–xFexSi single crystal with iron content x = 0.108 in proximity of a hidden quantum critical point. The use of small angle neutron scattering data together with magnetic susceptibility measurements down to 0.4 K and precise magnetoresistance measurements in the temperature range 2–20 K in magnetic field up to 5 T allowed us to construct the magnetic phase diagram of this compound in which at low magnetic fields B < 0.15 T an intermediate phase with short-range magnetic order exists in a wide temperature range 0.62 K < T < 9.1 K. It was found that the increase in magnetic field first results in the suppression of a transition to the spiral phase with long-range magnetic order at very low temperatures, and then induces a transition of the intermediate phase to a spin-polarized (ferromagnetic) phase with lowering temperature. The temperature of this transition TSP increases with magnetic field logarithmically, TSP ~ log(B), and results in formation of a singular point on the magnetic phase diagram located at T ~ 8.5 K and B ~ 3.5 T, which may be either a triple or a critical point. The possible spin-liquid nature of the intermediate phase is discussed.
About the authors
S. V. Demishev
Prokhorov General Physics Institute; Moscow Institute of Physics and Technology (State University)
Author for correspondence.
Email: demis@lt.gpi.ru
Russian Federation, Moscow, 119991; Dolgoprudnyi, Moscow region, 141700
I. I. Lobanova
Prokhorov General Physics Institute; Moscow Institute of Physics and Technology (State University)
Email: demis@lt.gpi.ru
Russian Federation, Moscow, 119991; Dolgoprudnyi, Moscow region, 141700
A. V. Bogach
Prokhorov General Physics Institute
Email: demis@lt.gpi.ru
Russian Federation, Moscow, 119991
V. V. Glushkov
Prokhorov General Physics Institute; Moscow Institute of Physics and Technology (State University)
Email: demis@lt.gpi.ru
Russian Federation, Moscow, 119991; Dolgoprudnyi, Moscow region, 141700
V. Yu. Ivanov
Prokhorov General Physics Institute
Email: demis@lt.gpi.ru
Russian Federation, Moscow, 119991
T. V. Ischenko
Prokhorov General Physics Institute
Email: demis@lt.gpi.ru
Russian Federation, Moscow, 119991
N. A. Samarin
Prokhorov General Physics Institute
Email: demis@lt.gpi.ru
Russian Federation, Moscow, 119991
N. E. Sluchanko
Prokhorov General Physics Institute
Email: demis@lt.gpi.ru
Russian Federation, Moscow, 119991
S. Gabani
Institute of Experimental Physics
Email: demis@lt.gpi.ru
Slovakia, Košice, 040 01
E. Čižmár
P.J. Šafárik University in Košice
Email: demis@lt.gpi.ru
Slovakia, Košice, SK-04001
K. Flachbart
Institute of Experimental Physics
Email: demis@lt.gpi.ru
Slovakia, Košice, 040 01
N. M. Chubova
Petersburg Nuclear Physics Institute
Email: demis@lt.gpi.ru
Russian Federation, Gatchina, 188300
V. A. Dyadkin
Petersburg Nuclear Physics Institute; Swiss–Norwegian Beamlines at the European Synchrotron Radiation Facility
Email: demis@lt.gpi.ru
Russian Federation, Gatchina, 188300; Grenoble, 38000
S. V. Grigoriev
Petersburg Nuclear Physics Institute
Email: demis@lt.gpi.ru
Russian Federation, Gatchina, 188300
Supplementary files
