On inverse boundary heat-conduction problems for recovery of heat fluxes to anisotropic bodies with nonlinear heat-transfer characteristics


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A closed method is proposed for recovering heat fluxes to anisotropic bodies under conditions of aero-gasdynamic heating from experimental temperature data at spatial-temporal nodes. The thermal protection of a body is made of anisotropic materials with components of thermal-conductivity tensor, which are dependent of temperature, i.e., are nonlinear. The method is based on approximating a spatial dependence of a heat flux by a linear combination of basis functions with sought coefficients (parameters), which are found by minimization of a quadratic functional of the residual (the discrepancy between experimental and theoretical temperature values) using the implicit method of gradient descent, as well as on constructing and numerically solving problems for the determination of sensitivity coefficients. To increase the degree of correctness of an inverse problem, along with a main functional, the regularizing functionals have been constructed and utilized on the basis of smoothness requirements for spatial functions of heat fluxes to have continuous first and second derivatives, which allowed heat fluxes with the coupled heat transfer to be recovered in the form of arbitrary functions: monotonic, nonmonotonic, having extrema, inflection points, etc. Numerous results of recovering heat fluxes to anisotropic bodies are obtained and discussed, with the regularization parameter being selected for every case.

Об авторах

V. Formalev

Moscow Aviation Institute

Автор, ответственный за переписку.
Email: formalev38@mail.ru
Россия, Moscow, 125993

S. Kolesnik

Moscow Aviation Institute

Email: formalev38@mail.ru
Россия, Moscow, 125993

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).