Minimax Optimization Method in the Two-Dimensional Boundary-Value Inverse Heat Conduction Problem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A method is proposed for the two-dimensional inverse heat conduction problem via reconstruction of the spatial and temporal density of a boundary heat flux. It is based on the optimal control theory for objects with distributed parameters. The method limits the set of desired solutions to the class of physically realized functions, which makes it possible to represent the desired-effect structure as a product of two one-variable functions. The problem of semi-infinite optimization, which minimizes temperature residuals in the uniform estimation metric, is formulated based on the parameterization of the desired characteristic (considered a control action). Analytical solution of the problem with the alternance properties of the desired optimal temperature deviations makes it possible to obtain the optimal values of the parameter vector.

Авторлар туралы

A. Diligenskaya

Samara State Technical University

Хат алмасуға жауапты Автор.
Email: adiligenskaya@mail.ru
Ресей, Samara, 443100

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019