Calculation of the Surface Tension of Droplets of Binary Solutions of Simple Fluids and the Determination of Their Minimum Size


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To describe the surface tension of vapor–liquid interfaces of one- and two-component simple fluids, a molecular theory based on the lattice gas model is applied. The surface tension of mixtures of simple fluids are calculated in a quasi-chemical approximation of an accounting of the intermolecular interactions of the nearest neighbors. The model parameters previously found from experimental data on bulk surface tensions enable calculation of the surface tension of vapor–liquid interfaces of one- and two-component droplets with different sizes as the function of their radius. The minimum size of thermodynamically stable small droplets with the properties of a homogeneous phase inside is estimated.

About the authors

Yu. K. Tovbin

Karpov Institute of Physical Chemistry

Author for correspondence.
Email: tovbin@cc.nifhi.ac.ru
Russian Federation, Moscow, 105064

E. S. Zaitseva

Karpov Institute of Physical Chemistry

Email: tovbin@cc.nifhi.ac.ru
Russian Federation, Moscow, 105064

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.