Arc tectonic elements and the upper mantle structure of the Central and Southeastern Asia: seismic tomography and seismicity data

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Analysis of the upper mantle plumes spatial distribution in the inner part of the Sunda arc shows a number of plume bodies interrupting the stagnating slab framed from the south by the sinking slab of the Sunda Arc. Possible mechanisms providing this structure of the mantle are (i) sublatitudinal toroidal mantle flow through a gap in a flat slab and (ii) roll-back capable of forming a gap in a flat slab and launching upper mantle plumes in it without deep (>1000 km) roots. The space above the slab top surface consists of local hot mantle bodies, which are secondary plumes and often form local rift segments. The three-dimensional mapping of δVp in the Tibet and Central Asia region contains structural styles similar to the Sunda Arc region. There is a region of subhorizontal fragments of slabs and a gap in which plume anomalies of deep and secondary origin are established. The vectors of the movements of rock masses along the shape of the Sunda Arc detachment planes, detected from seismic events, are directed outward from the center of the curvature of the arc in which secondary upper mantle plumes are concentrated. This indicates the presence of thrust processes at the arc front that are not associated with the subducting plate. Thrusting at the arc is accompanied by less number of events along antithetical thrusts. The fan-shaped orientation of azimuth movements along the Himalayas is directed to Hindustan. This shows that the main indicator of tectonic activity — seismic events — has a direction of rock mass displacement to the south from the back-arc stretching region within Tibet with the formation of thrust deformations during movements along the detachment planes. In the Himalayan arc, as well as the Sunda Arc, two directions of seismic movements are distinguished. The first direction corresponds to the model of the Indian Plate subduction. The second direction combines the displacement of the thrusts on the Indian Plate.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Sokolov

Geological Institute, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: sysokolov@yandex.ru
Ресей, bld.7, Pyzhevsky per., 119017 Moscow

V. Trifonov

Geological Institute, Russian Academy of Sciences

Email: sysokolov@yandex.ru
Ресей, bld.7, Pyzhevsky per., 119017 Moscow

Әдебиет тізімі

  1. Аки К., Ричардс П. Количественная сейсмология. — Т. 1. — Теория и методы. — М.: Мир, 1983. 360 с.
  2. Алексеев Р.С., Ребецкий Ю.Л. Модель эволюции литосферы Гималайско-Тибетского орогена // Вестн. КРАУНЦ. Науки о Земле. 2021. Т. 52. № 4. С. 89‒107.
  3. Белов А. А., Гатинский Ю. Г., Моссаковский А. А. Индосиниды Евразии // Геотектоника. 1985. № 6. С. 21–42.
  4. Буртман В.С. Тянь-Шань и Высокая Азия: Тектоника и геодинамика в палеозое. — Под ред. А.А. Моссаковского. — М.: Геос, 2006. 215 с. (Тр. ГИН РАН. 2006. Вып. 570).
  5. Жао Д., Пирайно Ф., Лиу Л. Структура и динамика мантии под восточной Россией и прилегающими регионами // Геология и геофизика. 2010. Т. 51. № 9. С. 1188–1203.
  6. Лобковский Л.И., Кононов М.В., Шипилов Э.В. Геодинамические причины возникновения и прекращения кайнозойских сдвиговых деформаций в Хатанга‒Ломоносовской разломной зоне (Арктика) // ДАН. Науки о Земле. 2020. Т. 492. № 1. С. 82–87.
  7. Мазарович А.Н. Основы геологии СССР. — М.‒Л.: ОНТИ НКТП СССР, 1938. 544 с.
  8. Моссаковский А.А., Руженцев С.В., Самыгин С.Г., Хераскова Т.Н. Центрально-Азиатский складчатый пояс: геодинамическая эволюция и история формирования // Геотектоника. 1993. № 6. С. 3–32.
  9. Паpфенов Л.М., Беpзин Н.А., Xанчук А.И., Бадарч Г., Беличенко В.Г., Булатов А.Н., Дриль С.И., Кириллова Г.Л., Кузьмин М.И., Ноклеберг У., Прокопьев А.Д., Тимофеев В.Ф., Томуртогоо О., Янь Х. Модель фоpмиpования оpогенныx пояcов Центpальной и Cевеpо-Воcточной Азии // Тиxоокеанcкая геология. 2003. Т. 22. № 6. С. 7–41.
  10. Ребецкий Ю.Л., Алексеев Р.С. Поле современных тектонических напряжений Средней и Юговосточной азии // Геодинамика и тектонофизика. 2014. Т. 5. № 1. С. 257–290. doi: 10.5800/GT2014510127
  11. Ризниченко Ю.В. Расчет скорости деформаций при сейсмическом течении горных масс // Изв. АН СССР. Физика Земли. 1977. № 10. С. 34–47.
  12. Соколов С.Ю., Трифонов В.Г. Роль астеносферы в перемещении и деформации литосферы (Эфиопско-Афарский суперплюм и Альпийско-Гималайский пояс) // Геотектоника. 2012. № 3. С. 3–17.
  13. Трифонов В.Г., Зеленин Е.А., Соколов С.Ю., Бачманов Д.М. Активная тектоника Центральной Азии // Геотектоника. 2021. № 3. С. 60–77.
  14. Трифонов В.Г., Соколов С.Ю., Бачманов Д.М., Соколов С.А., Трихунков Я.И. Неотектоника и строение верхней мантии Центральной Азии // Геотектоника. 2021. № 3. С. 31–59.
  15. Хаин В.Е. Тектоника континентов и океанов. — М.: Научный мир, 2001. 606 с.
  16. Aitchison J.C., Ali J.R., Davis A.V. When and where did India and Asia collide? // J. Geophys. Res. 2007. Vol. 112. B05423. P. 1–19.
  17. Amaru M. Global travel time tomography with 3D reference models. — PhD Thesis — Geol. Departm., Utrecht Univ., Germany. 2007). 174 p. (in German).
  18. Argus D.F., Gordon R.G., DeMets C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame // Geochem., Geophys., Geosyst. G3. 2011. Vol. 12. N. 11. P. 1–13.
  19. Becker T.W., Boschi L. A comparison of tomographic and geodynamic mantle models // Geochem., Geophys., Geosyst. 2002. Vol. 3. P. 1‒48. Doi: 10.129/2001GC000168
  20. Cloetingh S., Koptev A., Lavecchia A., Kovács I.J., Beekman F. Fingerprinting secondary mantle plumes // Earth Planet. Sci. Lett. 2022. Vol. 597. Art.117819. P. 1‒16.
  21. Gaetani M. The Karakorum Block in Central Asia, from Ordovician to Cretaceous // Sediment. Geol. 1997. Vol. 109. P. 339–359.
  22. Gan W., Molnar P., Zhang P., Xiao G., Liang S., Zhang K., Li Z., Xu K., Zhang L. Initiation of clockwise rotation and eastward transport of Southeastern Tibet inferred from deflected fault traces and GPS observations // GSA Bull. 2021. Vol. 134. No. 5-6. P. 1129–1142. doi: 10.1130/B36069.1
  23. Graham S.E., Loveless J.P., Meade B.J. Global Plate Motions and Earthquake Cycle Effects // Geochemistry Geophysics Geosystems G3. 2017. Vol. 19. P. 2032–2048.
  24. Global CMT Catalog. 2018, www.globalcmt.org/CMTsearch.html (Accessed October 31, 2018).
  25. Guzman-Speziale M. Oblique plate convergence along arcuate trenches on a spherical Earth. An example from the Western Sunda Arc // Acta Geophysica. 2023. P. 1‒21. doi: 10.1007/s11600-023-01163-9. p.1
  26. Hall R., Spakman W. Mantle structure and tectonic history of SE Asia // Tectonophysics. 2015. Vol. 658. P. 14–45.
  27. Hao M., Li Y., Zhuang W. Crustal movement and strain distribution in East Asia revealed by GPS observations // Nature Sci. Rep. 2019. Vol. 9. Art. 16797. doi: 10.1038/s41598-019-53306-y
  28. Intraplate Deformation in the Central Indian Ocean Basin. — Ed. by Yu.P. Neprochnov, G.D. Rao, C. Subramaniyam, K.S.R. Murthy, (Geol. Soc. of India. 1998. Vol. M-39), 250 p.
  29. Kárason H., Van Der Hilst R.D. Constraints on mantle convection from seismic tomography. — In: The History and Dynamics of Global Plate Motions. — Ed. by M.A. Richards, R.G. Gordon, R.D. Van Der Hilst, (AGU, Geophys. Monogr. Ser. 2000. Vol. 121), P. 277–288. doi: 10.1029/GM121p0277
  30. Searle M.P. Geology and Tectonics of the Karakorum Mountains. — Ed. by B. F. Windley, (Wiley & Sons, Chichester, UK. 1991), 358 p.
  31. Su W.J., Dziewonski A.M. Simultaneous inversion for 3D variations in shear and bulk velocity in the mantle // Phys. Earth Planet. Interior. 1997. Vol. 100. No. 1–4. P. 135‒156.
  32. Suo Y., Dong H., Liu L., Peng D., Li Y., Liu J., Dai L., Cao X., Li S. Landward mantle flow associated with the Pacific subduction system opened the South China Sea // Research Square. 2022. doi: 10.21203/rs.3.rs-2332418/v1
  33. Susilo S., Meilano I., Abidin H.Z., Sapiie B., Efendi J., Wijanarto A.B. Velocity field from twenty-two years of combined GPS daily coordinate time series analysis. — AIP Conf. Proc. 2016. Art.1730.040003. P. 1‒4. doi: 10.1063/1.4947393
  34. Todrani A., Speranza F., D’Agostino N., Zhang B. Post-50 Ma Evolution of India‒Asia collision zone from paleomagnetic and GPS data: Greater India indentation to eastward Tibet low // Geophys. Res. Lett. 2021. Vol. 49. P. 1‒16. doi: 10.1029/2021GL096623
  35. Toyokuni G., Zhao D., Kurata K. Whole-mantle tomography of Southeast Asia: New insight into plumes and slabs // J. Geophys. Res.: Solid Earth. 2022. Vol.127. No.11. P. 1‒29. doi: 10.1029/2022JB024298
  36. Van der Meer D.G., Van Hinsbergen D.J., Spakman W. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity // Tectonophysics. 2018. Vol. 723. P. 309–448.
  37. Wang L., Barbot S. Three-dimensional kinematics of the India–Eurasia collision // Nature communications: Earth & Environment. 2023. Vol. 164. No. 4. P. 1‒13. doi: 10.1038/s43247-023-00815-4
  38. Wang M., Shen Z.K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications // J. Geophys. Res.: Solid Earth. 2020. Vol. 125. No. 2. P. 1–22. doi: 10.1029/2019JB018774
  39. GEBCO 30” Bathymetry Grid. Version 20141103. 2014. (http://www.gebco.net) (Accessed February 23, 2022)

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of the horizontal movement of lithospheric plates and blocks in Southeast Asia, mainland China, India and Indonesia according to data from [18, 33, 34, 38, 39]. Motion vectors (stntm arrows) have a conventional scale without precise amplitude calibration.

Жүктеу (2MB)
3. Fig. 2. Directions of displacements along the rupture planes of strong earthquakes according to the SMT catalog data (according to [24, 39]).

Жүктеу (2MB)
4. Fig. 3. Tectonic map of the main structures of the Himalayan-Tibetan region and Southeast Asia (according to data from [3, 4, 13, 14, 15]).

Жүктеу (2MB)
5. Fig. 4. Volumetric distribution of velocity variations Vp in Southeast Asia according to the UU-P07 model [17, 26, 36].

Жүктеу (1MB)
6. Fig. 5. Seismic tomographic section along the sublatitudinal profile according to the UU-P07 model data (according to [17, 26, 36]).

Жүктеу (815KB)
7. Fig. 6. Seismic tomographic section along the submeridional profile according to the UU-P07 model data (according to [17, 26, 36]).

Жүктеу (778KB)
8. Fig. 7. Volumetric distribution of velocity variations Vp in Central Asia according to the UU-P07 model (based on [17, 26, 36]).

Жүктеу (892KB)
9. Fig. 8. Seismic tomographic section along the submeridional profile according to the UU-P07 model data (according to [17, 26, 36]).

Жүктеу (499KB)
10. Fig. 9. Scheme of the horizontal movement of lithospheric plates and blocks in the collision zone of Hindustan and Tibet, constructed according to GPS data (according to [22, 27, 39]).

Жүктеу (2MB)
11. Fig. 10. Directions of displacements along the rupture planes of strong earthquakes according to the SMT catalog data ([24, 39].

Жүктеу (1MB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>