Evolution of the Du Toit–Andrew Bain–Marion–Prince Edward transform fault system (Indian Ocean): Physical modeling of structural and kinematic changes in the late Cretaceous–Paleocene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Du Toit–Andrew Bain–Marion–Prince Edward transform fault system separates two parts of the Southwest Indian Ridge that differ in structure and development. The change in the extension direction significantly affected the structure of the transform faults, when in the period 69–52 Ma it was successively subjected to transtension and transpression, which led to the formation of multiple bends in its fault zones. A physical modeling method was used to identify the conditions of structural changes and the evolution of the transform fault during this period. It was experimentally shown that a complex structural pattern could only form under a certain combination of conditions, the most important of which are (i) the angle of inclination of the transform fault system to the direction of extension, (ii) the length of the fault segments, (iii) the ratio of the length of the fault segments to the length of the spreading segments. The experimental results suggest the development of passive trace bends as a transtensional duplex, which is confirmed by the long existence of the structure and its self-development. Almost identical results were obtained under transtensional conditions, in which the multitransform system gradually transforms into a single oblique transform fault under the influence of a gradual decrease in intertransform spreading segments. The possibility of formation intertransform ridges observed within the passive traces of the Andrew Bain fault, which remained as a result of the rotation of lithospheric blocks, was shown in two experimental series. Sharp structural and kinematic changes in the fault zone may be the result of a major regional tectonic reorganization during the collision of the paleocontinents of India and Eurasia.

About the authors

V. A. Bogoliubskii

Lomonosov Moscow State University ‒ Earth Science Museum; Lomonosov Moscow State University, Faculty of Geology; Geological Institute, Russian Academy of Sciences

Email: bogolubskiyv@yandex.ru
bld. 1, Leninskiye Gory, 119991 Moscow, Russia; bld. 1, Leninskiye Gory, 119991 Moscow, Russia; bld. 7, Pyzhevsky Lane, 119017 Moscow, Russia

E. P. Dubinin

Lomonosov Moscow State University ‒ Earth Science Museum; Lomonosov Moscow State University, Faculty of Geology

Email: bogolubskiyv@yandex.ru
bld. 1, Leninskiye Gory, 119991 Moscow, Russia; bld. 1, Leninskiye Gory, 119991 Moscow, Russia

A. L. Grokholskii

Lomonosov Moscow State University ‒ Earth Science Museum

Author for correspondence.
Email: bogolubskiyv@yandex.ru
bld. 1, Leninskiye Gory, 119991 Moscow, Russia

References

  1. Боголюбский В.А., Дубинин Е.П., Грохольский А.Л. Трансформные и нетрансформные смещения западной части Юго-Западного Индийского хребта (экспериментальное моделирование) // Геотектоника. 2025. № 1. С. 104–124. doi: 10.31857/S0016853X25010068
  2. Грохольский А.Л., Дубинин Е.П. Структурообразование в рифтовых зонах и поперечных смещениях осей спрединга по результатам физического моделирования // Физика Земли. 2010. № 5. С. 49–55.
  3. Грохольский А.Л., Дубинин Е.П. Экспериментальное моделирование структурообразующих деформаций в рифтовых зонах срединно-океанических хребтов // Геотектоника. 2006. № 1. С. 76–94.
  4. Кохан А.В., Дубинин Е.П., Агранов Г.Д., Толстова А.И. Строение и эволюция разломных зон Агульяс и Эндрю-Бейн. ‒ В сб.: Морские исследования и образование (MARESEDU-2020). ‒ Мат-лы IX Междунар. науч.-практич. конф. ‒ Тверь: Полипресс, 2020. Т. III. С. 131–134.
  5. Кохан А.В., Дубинин Е.П., Сущевская Н.М. Строение и эволюция восточной части Юго-Западного срединно-океанического Индийского хребта // Геотектоника. 2019. № 4. С. 3–24. doi: 10.31857/S0016-853X201933–24
  6. Пейве А.А. Аккреция океанической коры в условиях косого спрединга // Геотектоника. 2009. № 2. С. 5‒19.
  7. Пейве А.А., Сколотнев С.Г. Особенности составов базальтов западной части разлома Эндрю-Бейн Юго-Западно-Индийского хребта // ДАН. 2017. Т. 477. № 4. С. 441‒447.
  8. Пейве А.А., Сколотнев С.Г., Лиджи М., Турко Н.Н., Бонатти Э., Колодяжный С.Ю., Чамов Н.П., Цуканов Н.В., Барамыков Ю.Е., Ескин А.Е., Гриндли Н., Склейтер Д., Брунелли Д., Перцев А.Н., Чиприани А., Бортолуци Д., Меркюри Р., Паганелли Е., Мучини Ф., Такеучи Ч., Зафанини Ф., Добролюбова К.О. Исследования зоны трансформного разлома Эндрю-Бейн (Африкано-Антарктический регион) // ДАН. 2007. Т. 416. № 1. С. 477‒480.
  9. Пущаровский Ю.М., Пейве А.А., Разницин Ю.Н., Базилевская Е.С. Разломные зоны Центральной Атлантики. ‒ Под ред. Ю.М. Пущаровского ‒ М.: ГЕОС, 1995. 160 с. (Тр. ГИН РАН. Вып. 495).
  10. Сущевская Н.М., Щербаков В.Д., Пейве А.А., Дубинин Е.П., Беляцкий Б.В., Жилкина А.В. Формирование океанической коры в пределах района разломной зоны Эндрю-Бейн Юго-Западного Индийского хребта (по данным петролого-геохимического изучения) // Геохимия. 2024. Т. 69. № 1. С. 3–20. doi: 10.31857/S0016752524010016
  11. Шеменда А.И. Критерии подобия при механическом моделировании тектонических процессов // Геология и геофизика. 1983. № 10. С. 10–19.
  12. Barker P.F., Lawver L.A. South American-Antarctic plate motion over the past 50 Myr, and the evolution of the South American-Antarctic ridge // Geophysical Journal. 1988. Vol. 94. P. 377‒386. doi: 10.1111/j.1365-246X.1988.tb02261.x
  13. Bergh H.W., Norton I.O. Prince Edward fracture zone and the evolution of the Mozambique Basin // J. Geophys. Res. 1976. Vol. 81. P. 5221‒5239. doi: 10.1029/JB081i029p05221
  14. Bernard A., Munchy M., Rotstein Y., Sauter D. Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data // Geophys. J. Int. 2005. Vol. 162. P. 765–778. doi: 10.1111/j.1365-246X.2005.02672.x
  15. Cai F., Ding L., Yue Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India–Asia collision // Earth and Planet. Sci. Lett. 2011. Vol. 305. Is. 1‒2. P. 195‒206. doi: 10.1016/j.epsl.2011.02.055
  16. Cande S.C., Patriat P. The anticorrelated velocities of Africa and India in the Late Cretaceous and early Cenozoic // Geophys. J. Int. 2015. Vol. 200. Is. 1. P. 227‒243. doi: 10.1093/gji/ggu392
  17. Clift P.D., Carter A., Krol M., Kirby E. Constraints on India–Eurasia collision in the Arabian Sea region taken from the Indus Group, Ladakh Himalaya, India – In: The Tectonic and Climatic Evolution of the Arabian Sea Region. – Ed. By P.D. Clift, D. Kroon, C. Gaedicke, J. Craig (Geol. Soc., London. Spec. Publ. 2022. Vol. 195). P. 97‒116. doi: 10.1144/GSL.SP.2002.195.01.07
  18. Croon M.B., Cande S.C., Stock J.M. Revised Pacific-Antarctic plate motions and geophysics of the Menard fracture zone // Geochem., Geophys., Geosyst. (G3). 2008. Vol. 9. Is. 7. Q07001. doi: 10.1029/2008GC002019
  19. Davis J.K. The breakup of East Gondwana: insights from plate modeling, basin analysis, and numerical experiments. ‒ PhD Thesis. ‒ Univ. of Texas at Austin, Austin, USA. 2017. 166 p.
  20. DeMets C., Merkouriev S., Sauter D. High-resolution estimates of Southwest Indian Ridge plate motions, 20 Ma to present // Geophys. J. Int. 2015. Vol. 203. P. 1495–1527. doi: 10.1093/gji/ggv366
  21. DeMets C., Merkouriev S., Sauter D. High resolution reconstructions of the Southwest Indian Ridge, 52 Ma to present: implications for the breakup and absolute motion of the Africa plate // Geophys. J. Int. 2021. Vol. 226. Is. 3. P. 1461–1497. doi: 10.1093/gji/ggab107
  22. Fisher R.L., Sclater J.G. Tectonic evolution of the Southwest Indian Ocean since the Mid-Cretaceous: plate motions and stability of the pole of Antarctica/Africa for at least 80 Myr // Geophys. J. Int. 1983. Vol. 73. Iss. 2. P. 553–576. doi: 10.1111/j.1365-246X.1983.tb03330.x
  23. Georgen J.E., Lin J. Plume-transform interactions at ultra-slow spreading ridges: Implications for the Southwest Indian Ridge // Geochem., Geophys., Geosyst. (G3). 2003. Vol. 4. No. 9. 9106. doi: 10.1029/2003GC000542
  24. Georgen J.E., Lin J., Dick H.J.B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets // Earth and Planet. Sci. Lett. 2001. Vol. 187. P. 283–300. doi: 10.1016/S0012-821X(01)00293-X
  25. Gerya T. Origin and models of oceanic transform faults // Tectonophysics. 2012. Vol. 522–523. P. 34–54. doi: 10.1016/j.tecto.2011.07.006
  26. Grindlay N.R., Madsen J.A., Rommevaux-Jestin C., Sclater J., Murphy S. Southwest Indian Ridge 15°‒35° E: A geophysical investigation of an ultra-slow spreading Mid-Ocean Ridge system – In International Ridge News – Ed. by A. Adamczewska, M. Kaczmarz (Fall Winter, Estorial, Portugal. 1996. Vol. 5. No. 1). P. 7–12.
  27. Hu X., Garzanti E., Wang J., Huang W., An W., Webb A. The timing of India‒Asia collision onset – Facts, theories, controversies // Earth-Sci. Rev. 2016. Vol. 160. P. 264–299. doi: 10.1016/j.earscirev.2016.07.014
  28. Ligi M., Bonatti E., Gasperini L., Poliakov A.N.B. Oceanic broad multifault transform plate boundaries // Geology. 2002. Vol. 30. No. 1. P. 11–14. doi: 10.1130/0091-7613(2002)030<0011:OBMTPB>2.0.CO;2
  29. Lodolo E., Coren F., Ben-Avraham Z. How do long-offset oceanic transforms adapt to plate motion changes? The example of the Western Pacific-Antarctic plate boundary // J. Geophys. Res. Solid Earth. 2013. Vol. 118. P. 1195–1202. doi: 10.1002/jgrb.50109
  30. McCarthy M.C., Kruse S.E., Brudzinski M.R., Ranieri M.E. Changes in plate motions and the shape of Pacific fracture zones // J. Geoph. Res. 1996. Vol. 101. No. B6. P. 13715‒13730. doi: 10.1029/96JB00646
  31. Menard H., Atwater T. Changes in Direction of Sea Floor Spreading // Nature. 1968. Vol. 219. P. 463–467. doi: 10.1038/219463a0
  32. Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys // J. Asian Earth Sci. 2013. Vol. 66. P. 1–33. doi: 10.1016/j.jseaes.2012.12.020
  33. Meyer B., Saltus R., Chulliat A. EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Vers. 3 ‒ NOAA National Centers for Environmental Information. URL: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.geophysical_models:EMAG2_V3. Accessed October 1, 2024. doi: 10.7289/V5H70CVX
  34. Patriat P., Sloan H., Sauter D. From slow to ultraslow: A previously undetected event at the Southwest Indian Ridge at ca. 24 Ma // Geology. 2008. Vol. 36. No. 3. P. 207–210. doi: 10.1130/G24270A.1
  35. Royer J.-Y., Patriat P., Bergh H.W., Scotese C.R. Evolution of the Southwest Indian Ridge from the Late Cretaceous (anomaly 34) to the Middle Eocene (anomaly 20) // Tectonophysics. 1988. Vol. 155. P. 235–260. doi: 10.1016/0040-1951(88)90268-5
  36. Ryan W.B.F., Carbotte S.M., Coplan J., O’Hara S., Melkonian A., Arko R., Weissel R.A., Ferrini V., Goodwillie A., Nitsche F., Bonczkowski J., Zemsky R. Global Multi-Resolution Topography (GMRT) synthesis data set // Geochem., Geophys., Geosyst. (G3). 2009. Vol. 10 Q03014. doi: 10.1029/2008GC002332
  37. Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure // Science. 2014. Vol. 346. No. 6205. P. 65–67. doi: 10.1126/science.1258213
  38. Sauter D., Cannat M. The ultraslow spreading Southwest Indian Ridge. ‒ In: Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. ‒ Ed. by P.A. Rona, C.W. Devey, J. Dyment, B.J. Murton (Washington, DC, USA. Geophys. Monogr. 2010. Ser. Vol. 188). P. 153–173. doi: 10.1029/2008GM00843
  39. Sclater J.G., Grindlay N.R., Madsen J.A., Rommevaux-Jestin C. Tectonic interpretation of the Andrew Bain transform fault: Southwest Indian Ocean // Geochem., Geophys., Geosyst. (G3). 2005. Vol. 6. No. 9. Q09K10. doi: 10.1029/2005GC000951
  40. Seton M., Müller R.D., Zahirovic S., Williams S., Wright N.M., Cannon J., Whittaker J.M., Matthews K.J., McGirr R. A global data set of present-day oceanic crustal age and seafloor spreading parameters // Geochem., Geophys., Geosyst. (G3). 2020. Vol. 21. No.10. e2020GC009214. doi: 10.1029/2020gc009214
  41. Seton M., Whittaker J., Wesse P., Müller R.D., DeMets C., Merkouriev S., Cande S., Gaina C., Eagles G., Grano R., Stock J., Wright N., Williams S. Community infrastructure and repository for marine magnetic identifications // Geochem., Geophys., Geosyst. (G3). 2014. Vol. 5. No. 4. P. 1629–1641. doi: 10.1002/2013GC005176
  42. Standish J.J., Dick H.J.B., Michael P.J., Melson W.G., O’Hearn T. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25°E): Major element chemistry and the importance of process versus source // Geochem., Geophys. Geosyst. (G3). 2008. Vol. 9. No. 5. doi: 10.1029/2008GC001959
  43. Shemenda A.I., Grocholsky A.L. Physical modeling of slow seafloor spreading // J. Geophys. Res. 1994. Vol. 99. P. 9137–9153. doi: 10.1029/93JB02995
  44. Shemenda A.I., Grokholsky A.L. A formation and evolution of overlapping spreading centers (constrained on the basis of physical modelling) // Tectonophysics. 1991. Vol. 199. P. 389–404. doi: 10.1016/0040-1951(91)90180-Z
  45. Straume E.O., Gaina C., Medvedev S., Hochmuth K., Gohl K., Whittaker J.M., Fattah R.A., Doornenbal J.C., Hopper J.R. GlobSed: Updated total sediment thickness in the world’s oceans // Geochem., Geophys., Geosyst. (G3). 2019. Vol. 20. No. 4. P. 1756–1772. doi: 10.1029/2018GC008115
  46. Suo Y.H., Li S.Z., Yu S., Zhang Z., Li X.Y., Guo L.L. Morphotectonics and ridge jumpings in the Indian Ocean // Geol. J. 2016. Vol. 51. P. 624–633. doi: 10.1002/gj.2746
  47. Takeuchi C.S. Transform faults and lithospheric structure: Insights from numerical models and shipboard and geodetic observations. ‒ PhD Thesis. ‒ Univ. of California, San Diego, USA. 2012. 156 p.
  48. Takeuchi C.S., Sclater J.G., Grindlay N.R., Madsen J.A., Rommevaux-Jestin C. Segment-scale and intrasegment lithospheric thickness and melt variations near the Andrew-Bain megatransform fault and Marion hot spot: Southwest Indian Ridge, 25.5°E–35°E // Geochem., Geophys. Geosyst. (G3). 2010. Vol. 11. No. 7. Q07012. doi: 10.1029/2010GC003054
  49. Thompson J.O., Moulin M., Aslanian D., de Clarens P., Guillocheau F. New starting point for the Indian Ocean: Second phase of breakup for Gondwana // Earth-Sci. Rev. 2019. Vol. 191. P. 26–56. doi: 10.1016/j.earscirev.2019.01.018
  50. Tucholke B.E., Schouten H. Kane Fracture Zone // Marin. Geophys. Res. 1988. Vol. 10. P. 1–39. doi: 10.1007/BF02424659
  51. White L.T., Lister G.S. The collision of India with Asia // J. Geodynam. 2012. Vol. 56–57. P. 7‒17. doi: 10.1016/j.jog.2011.06.006
  52. Yu X., Dick H., Li X.H., You C.F., Hui D.Y., Hang H. The geotectonic features of the Southwest Indian Ridge and its geodynamic implications // Chin. J. Geophys. 2020. Vol. 63. No. 10. P. 3585‒3603. doi: 10.6038/cjg2020N0230
  53. Zhang T., Lin J., Gao J.Y. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts // Sci. Chin. Earth Sci. 2011. Vol. 54. P. 1177–1188. doi: 10.1007/s11430-011-4219-9
  54. Polycam. https://poly.cam. Accessed March, 2025.
  55. Surfer 26.0. https://www.goldensoftware.com/products/surfer. Accessed March, 2025.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».