The Late Cretaceous (Cenomanian‒Coniacian) Stage of Rifting in the Northern Part of North Atlantic and Arctic Basin
- Авторлар: Zayonchek A.V.1, Solovyev A.V.2
-
Мекемелер:
- Geological Institute of Russian Academy of Sciences
- All-Russian Research Geological Oil Institute
- Шығарылым: № 1 (2025)
- Беттер: 39-72
- Бөлім: Articles
- URL: https://journals.rcsi.science/0016-853X/article/view/293955
- DOI: https://doi.org/10.31857/S0016853X25010032
- EDN: https://elibrary.ru/DATGSG
- ID: 293955
Дәйексөз келтіру
Аннотация
The apatite fission-track dating ((AFT) method) from sandstones of the Triassic (Anisium‒Norium) age of the Severnaya borehole located on Graham Bell Island of the Franz Josef Land archipelago was performed. The Late Cretaceous age (~ 90 Ma) of the transition from the stage of relative temperature and tectonic stability to the stage of “rapid” exhumation of rocks has been established. The Late Cretaceous (Cenomanian‒Cognacian) stage of rock exhumation is widely manifested in the Arctic basin and its framing and correlates with the stage of magmatism. It is assumed that these events record one of the stages of rifting development in the northern part of the North Atlantic and the Arctic Basin, which is associated with the reorganization of the direction of plate movement in the northern part of the Pacific Ocean.
Толық мәтін

Авторлар туралы
A. Zayonchek
Geological Institute of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: soloviev@vnigni.ru
Ресей, 7, Pyzhevsky Lane, Moscow, 119017
A. Solovyev
All-Russian Research Geological Oil Institute
Email: soloviev@vnigni.ru
Ресей, 36, Enthusiast Hwy, Moscow, 105118
Әдебиет тізімі
- Абашеев В.В., Метелкин Д.В., Верниковский В.А., Васюкова Е.А., Михальцов Н.Э. Раннемеловой возраст базальтов архипелага Земля Франца-Иосифа: соответствие новых 40Ar/39Ar и палеомагнитных данных // ДАН. 2020. T. 493. № 1. С. 16‒20.
- Большиянов Д.Ю., Васильев Б.С., Виноградова Н.П., Гавриш А. и др. Государственная геологическая карта Российской Федерации. ‒ М-б 1:1 000 000 (третье поколение). ‒ Серия Лаптево-Сибироморская. ‒ Лист S-51 – Оленёкский залив, S-52 – дельта р. Лены. ‒ Объяснительная записка. – СПб.: ВСЕГЕИ, 2014. 274 с. + 9 вкл.
- Бро Е.Г., Пчелина Т.М., Преображенская Э.Н., Ронкина З.З., Войцеховская А.Г., Краснова В.Л., Можаева О.В. Осадочный чехол Баренцевоморского шельфа по данным параметрического бурения на островах. ‒ В сб.: Проблемы нефтегазоносности Мирового Океана. ‒ М.: Наука, 1989. С. 191‒197.
- Васильев Д.А., Прокопьев А.В., Худолей А.К., Ершова В.Б., Казакова Г.Г., Ветров Е.В. Термохронология северной части Верхоянского складчато-надвигового пояса по данным трекового датирования апатита // Природные ресурсы Арктики и Субарктики. 2019. Т. 24. № 4. С. 49–66. Doi: https://doi.org/10.31242/2618-9712-2019-24-4-4
- Герцева М.В., Борисова Т.П., Чибисова Е.Д., Емельянова Е.Н. и др. Государственная геологическая карта Российской Федерации. ‒ М-б 1:1 000 000 (третье поколение). ‒ Серия Верхояно-Колымская. ‒ Лист R-52 – Тикси. ‒ Объяснительная записка. – СПб.: ВСЕГЕИ, 2016. 312 с. + 3 вкл.
- Глебовский В.Ю., Каминский В.Д., Минаков А.Н., Меркурьев С.А., Чилдерс В.А., Брозина Дж.М. История формирования Евразийского бассейна Северного Ледовитого океана по результатам геоисторического анализа аномального магнитного поля // Геотектоника. 2006. № 4. С. 21‒42.
- Грамберг И.С., Евдокимова Н.К., Супруненко О.И. Катагенетическая зональность осадочного чехла Баренцевоморского шельфа в связи с нефтегазоносностью // Геология и геофизика. 2001. Т. 42. № 11‒12. С. 1808‒1820.
- Грамберг И.С., Школа И.В., Бро Е.Г., Шеходанов В.А., Армишев А.М. Параметрические скважины на островах Баренцева и Карского морей // Советская геология. 1985. № 1. С. 95‒98.
- Грачев А.Ф. Новый взгляд на природу магматизма Земля Франца-Иосифа // Физика Земли. 2001. № 9. С. 49‒61.
- Деревянко Л.Г., Гусев Е.А., Крылов А.А. Палинологическая характеристика меловых отложений хребта Ломоносова // Проблемы Арктики и Антарктики. 2009. Т. 82. № 2. С. 78‒84.
- Дибнер В.Д. Объяснительная записка к государственной геологической карте СССР масштаба 1:1000000. ‒ Лист U/T-38-41 (Земля Франца Иосифа). ‒ М.: Госгеолтехиздат, 1957, 63 с.
- Драчев С.С. Тектоника рифтовой системы дна моря Лаптевых // Геотектоника. 2000. № 6. С. 43‒58.
- Дымов В.А., Качурина Н.В., Макарьев А.А., Макарьева Е.М. и др. Государственная геологическая карта Российской Федерации. ‒ М-б 1:1 000 000 (новая серия). ‒ Лист U-37–40 — Земля Франца-Иосифа (северные острова). ‒ Объяснительная записка. ‒ Ред. А.А. Макарьев ‒ СПб.: ВСЕГЕИ, 2006. 272 с. + 6 вкл.
- Дымов В.А., Качурина Н.В., Макарьев А.А., Макарьева Е.М. и др. Государственная геологическая карта Российской Федерации. ‒ М-б 1:1 000 000 (третье поколение). ‒ Серия Северо-Карско-Баренцевоморская. ‒ Лист U-41–44. ‒ Земля Франца-Иосифа (восточные острова). ‒ Объяснительная записка . ‒ Ред. А. А. Макарьев ‒ СПб.: ВСЕГЕИ, 2011. 220 с. + 6 вкл.
- Карасик A.M. Магнитные аномалии хребта Гаккеля и происхождение Евразийского суббассейна Северного Ледовитого океана. ‒ В кн.: Геофизические методы разведки в Арктике. ‒ Л.: НИИГА, 1968. С.9‒19. (Тр. НИИГА, 1968. Вып. 5).
- Карякин Ю.В., Шипилов Э.В. Геохимическая специализация и 40Ar/39Ar-возраст базальтоидного магматизма островов Земля Александры, Нортбрук, Гукера и Хейса (архипелаг Земля Франца-Иосифа) // ДАН. 2009. Т. 425. № 2. С. 1‒5.
- Кораго Е.А., Столбов Н.М., Соболев Н.Н., Шманяк А.В. Магматические комплексы островов восточного сектора Российской Арктики. ‒ В сб.: 70 лет в Арктике, Антарктике и Мировом океане. ‒ Ред. В.Д. Камирский, Г.П. Аветистов, В.Л. Иванов ‒ СПб.: ВНИИОкеангеология, 2018. C. 101‒127.
- Костева И.Н. Стратиграфия юрско-меловых отложений архипелага Земля Франца-Иосифа // Арктика и Антарктика. 2005. Т. 38. Вып. 4. С. 16‒32.
- Лаверов Н.П., Лобковский Л.И., Кононов М.В. и др. Геодинамическая модель развития Арктического бассейна и примыкающих территорий для мезозоя и кайнозоя и внешняя граница континентального шельфа России // Геотектоника. 2013. № 1. С. 3–35.
- Лобковский Л.И., Вержбицкий В.Е., Кононов М.В. и др. Геодинамическая модель эволюции арктического региона в позднем мезозое-кайнозое и проблема внешней границы континентального шельфа России // Арктика: Экология и экономика. 2011. № 1. С. 104–115.
- Лобковский Л.И., Кононов М.В., Шипилов Э.В. Геодинамические причины возникновения и прекращения кайнозойских сдвиговых деформаций в Хатанга-Ломоносовской разломной зоне (Арктика) // ДАН. 2020. Т. 492. № 1. С. 82–87.
- Морозов А.Ф., Петров О.В., Шокальский С.П., Кашубин С.Н., Кременецкий А.А., Шкатов М.Ю., Каминский В.Д., Гусев Е.А., Грикуров Г.Э., Рекант П.В., Шевченко С.С., Сергеев С.А., Шатов В.В. Новые геологические данные, обосновывающие континентальную природу области центрально-Арктических поднятий // Региональная геология и металлогения. 2013. № 53. С. 34–55.
- Никишин А.М., Петров Е.И., Старцева К.Ф., Родина Е.А., Посаментиер Х., Фоулджер Дж., Глумов И.Ф., Морозов А.Ф., Вержбицкий В.Е., Малышев Н.А., Фрейман С.И., Афанасенков А.П., Безъязыков А.В., Доронина М.С., Никишин В.А., Сколотнев С.Г., Черных А.А. Сейсмостратиграфия, палеогеография и палеотектоника Арктического глубоководного бассейна и его российских шельфов. ‒ Отв. ред. Н.Б. Кузнецов ‒ М.: ГЕОС, 2022. 156 с. (Тр. ГИН РАН. 2022. Вып. № 632).
- Пейве А.А. Сходство и различия мелового магматизма Арктики // Геотектоника. 2018. № 2. C. 42–57.
- Петрова В.И., Батова Г.И., Куршева А.В., Литвиненко И.В., Моргунова И.П. Молекулярная геохимия органического вещества триасовых пород северо-восточной части Баренцева моря ‒ влияние тектонических и магматических процессов // Геология и геофизика. 2017. Т. 58. № 3‒4. С. 398‒409.
- Поселов В.А., Аветисов Г.П., Буценко В.В., Жолондз С.М., Каминский В.Д., Павлов С.П. Хребет Ломоносова как естественное продолжение материковой окраины Евразии в Арктический бассейн // Геология и геофизика. 2012. Т. 53. № 12. С. 1662‒1680.
- Преображенская Э.Н., Школа И.Б., Корчинская М.В. Стратиграфия триасовых отложений архипелага Земля Франца-Иосифа (по материалам параметрического бурения). ‒ В сборнике научных трудов: Стратиграфия и палеонтология мезозойских осадочных бассейнов Севера СССР. ‒ Под ред. Н.Д. Василевской. ‒ Л.: Севморгеология, 1985. С. 42‒64.
- Проскурнин В.Ф., Гавриш А.В., Межубовский В.В., Трофимов В.Р. и др. Государственная геологическая карта Российской Федерации. ‒ М-б 1:1 000 000 (третье поколение). ‒ Серия Таймырско-Североземельская. ‒ Лист S-49. – Хатангский залив. ‒ Объяснительная записка. – СПб.: ВСЕГЕИ, 2013. 275 с. + 12 вкл.
- Проскурнин В.Ф., Шкарубо С.И., Заварзина Г.А., Нагайцева Н.И. и др. Государственная геологическая карта Российской Федерации. ‒ М-б 1:1 000 000 (третье поколение). ‒ Серия Лаптево-Сибироморская. ‒ Лист S-50. – Усть-Оленёк. ‒ Объяснительная записка. – СПб.: ВСЕГЕИ, 2017. 264 с. + 6 вкл.
- Репин Ю.С, Федорова А.А., Быстрова В.В. и др. Мезозой Баренцевоморского седиментационного бассейна // Стратиграфия и ее роль в развитии нефтегазового комплекса России. – СПб.: ВНИГРИ, 2007. С. 112‒161.
- Сколотнев С.Г., Федонкин М.А., Корнейчук А.В. Новые данные о возрасте магматических пород поднятия Альфа-Менделеев (Северный Ледовитый океан) по результатам изотопного U/Pb датирования зерен циркона ДАН. 2023. Т. 513. № 1. С. 26–32.
- Соколов С.Д., Лобковский Л.И. Тектонические сценарии формирования арктических окраин Чукотки и Северной Аляски: от океана до коллизии. ‒ В сб.: Тектоника и геодинамика земной коры и мантии: фундаментальные проблемы. ‒ Отв. ред. К.Е. Дегтярев ‒ Мат-лы LIV Тектонич. совещ., г. Москва, МГУ, янв. 2023. ‒ М.: ГЕОС, 2023. Т. 2. С. 203–206.
- Соловьев А.В., Зайончек А.В., Супруненко О.И., Брекке Х., Фалеиде Дж.И., Рожкова Д.В., Хисамутдинова А.И., Столбов Н.М., Хоуриган Дж.K. Эволюция источников сноса триасовых отложений архипелага Земля Франца-Иосифа: U/PB LA-ICP-MS датирование обломочного циркона из скважины Северная // Литология и полезные ископаемые. 2015. № 2. С. 113–128.
- Сколотнев С.Г., Федонкин М.А., Корнийчук А.В. Новые данные о геологическом строении юго-западной части поднятия Менделеева (Северный Ледовитый океан) // ДАН. 2017. Т. 476. № 2. С. 190–196.
- Столбов Н.М. Архипелаг Земля Франца-Иосифа – геологический репер Баренцевоморской континентальной окраины. ‒ Автореф. дис. к.г.-м.н. ‒ СПб.: СПбГУ, 2005. 19 с.
- Тараховский А.Н., Фишман М.В., Школа И.В., Андреичев В.Л. Возраст траппов Земли Франца-Иосифа // Докл. АН СССР. 1982. Т. 266. № 4. С. 965‒969.
- Шипилов Э.В., Карякин Ю.В. Дайки острова Хейса (архипелаг Земля Франца-Иосифа): тектоническая позиция и геодинамическая интерпретация // ДАН. 2014. Т. 457. № 3. С. 327‒331.
- Akinin V.V., Miller E.L., Toro J., Prokopiev A.V., Gottlieb E.S., Pearcey S., Polzunenkov G.O., Trunilina V.A. Episodicity and the dance of Late Mesozoic magmatism and deformation along the northern circum-Pacific margin: North-eastern Russia to the Cordillera // Earth-Sci. Rev. 2020. Vol. 208. Art. 103272. doi: 10.1016/j.earscirev.2020.103272
- Alsulami S., Paton D.A., Cornwell D.G. Tectonic variation and structural evolution of the West Greenland continental margin // AAPG Bull. 2015. Vol. 99. No. 9. P. 1689–1711.
- Altenbernd T., Jokat W., Heyde I., Damm V. A crustal model for northern Melville Bay, Baffin Bay // J. Geophys. Res. Solid Earth. 2014. Vol. 119. P. 8610–8632. doi: 10.1002/2014JB011559
- Alvey A., Gaina C., Kusznir N.J., Torsvik T.H. Integrated crustal thickness mapping and plate reconstructions for the high Arctic // Earth and Planet. Sci. Lett. 2008. Vol. 274. P. 310–321.
- Amato J.M., Wright J.E., Gans P.B., Miller E.L. Magmatically induced metamorphism and deformation in the Kigluaik gneiss dome, Seward Peninsula, Alaska // Tectonics. 1994. Vol. 13. P. 515–527. Doi: https://doi.org/10.1029/93TC03320
- Backman J., Jakobsson M., Frank M., Sangiorgi F., Brinkhuis H., Stickley C., O’Regan M., Lovlie R., Palike H., Spofforth D., Gattacecca J., Moran K., King J., Heil C. Age model and core-seismic integration for the Cenozoic ACEX sediments from the Lomonosov Ridge // Paleoceanography. 2008. Vol. 23. P. 1–15. Doi: https://doi.org/10.1029/2007PA001476
- Backman J., Moran K., McInroy D.B., Mayer L.A., and the Expedition 302 Scientists. IODP-302 ‒ (Proc. IODP ‒ Integrated Ocean Drilling Program Management International, Edinburgh. 2006. Vol. 302), 22 p. Doi: 10.2204/ iodp.proc.302.101.2006
- Barnett-Moore N., Muller D.R., Williams S., Skogseid J., Seton M. A reconstruction of the North Atlantic since the earliest Jurassic // Basin Research. 2018. Vol. 30 (Suppl. 1). P. 160–185. Doi: https://doi: 10.1111/bre.12214
- Bonvalot S., Balmino G., Briais A., Kuhn M., Peyrefitte A., Vales N., Biancale R., Gabalda G., Reinquin F., Sarrailh M. World Gravity Map. ‒ (Commission for the Geological Map of the World. 2012. Eds. BGI-CGMW-CNES-IRD, Paris), https://ccgm.free.fr/
- Brekke H. The tectonic evolution of the Norwegian Sea continental margin, with emphasis on the Voring and More basins // Geol. Soc. Spec. Publ. 2000. № 167. P. 327–378.
- Brozena J.M., Childers V.A., Lawver L.A., Gahagan L.M., Forsberg J.I., Faleide J.I., Eldholm O. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: implications for basin development // Geology. 2003. Vol. 31. № 9. P. 825–828.
- Brumley K. Geologic history of the Chukchi Borderland, Arctic Ocean. ‒ PhD thesis. 2014. Stanford University. CA.
- Bryan S.E., Peate I.U., Peate D.W., Jerram D.A., Mawby M.R., Marsh J.S., Miller J.A. The largest volcanic eruptions on Earth // Earth Science Reviews. 2010. Vol. 102. No. 3‒4. P. 207–229. Doi: https://doi.org/10.1016/j.earscirev.2010.07.001
- Chalmers J.A., Pulvertaft T.C.R. Development of the continental margins of the Labrador Sea: A review. ‒ In: Non-volcanic Rifting of Continental Margins: A Comparison of Evidences from Land and Sea. ‒ Ed.by R.C.L. Wilson, R.B. Whitmarsh, B. Taylor, N. Froitzheim ‒ Geol. Soc. Spec. Publ. London. 2001. P. 77–105.
- Chardon D. Strain partitioning and batholith emplacement at the root of a transpressive magmatic arc // J. Struct. Geol. 2003. Vol. 25. P. 91–108.
- Christie R.L. Tertiary rocks at Lake Hazen, northern Ellesmere Island. ‒ Geol. Surv. Can. 1976. Pap. No. 76–1B. P. 259–262.
- Coakley B., Brumley K., Lebedeva-Ivanova N., Mosher D. Exploring the geology of the central Arctic Ocean; understanding the basin features in place and time // J. Geol. Soc. London. 2016. 173. P. 967–987. Doi: https://doi.org/10.1144/jgs2016-082
- Cochran J., Edwards M., Coakley B. Morphology and structure of the Lomonosov Ridge, Arctic Ocean // Geochem. Geophys. Geosyst. 2006. Vol. 7. Art. Q05019. Doi: 10.1029/2005GC001114' target='_blank'>https://doi: 10.1029/2005GC001114
- Coffin M.F., Eldholm O. Large Igneous Provinces ‒ Crustal structure, dimensions and external consequences // Rev. Geophys. 1994. Vol. 32. No. 1. P. 1–36.
- Cohen K.M., Finney S.C., Gibbard P.L., Fan J.-X. The ICS International Chronostratigraphic Chart // Episodes. 2013. Updated v. 2020/3. Vol. 36. P. 199‒204.
- Corfu F., Polteau S., Planke S., Faleide J.I., Svensen H., Zayoncheck A., Stolbov N. U‒Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province // Geol. Mag. 2013. Vol. 150. No. 6. P. 1127–1135.
- Dibner V.D. The Geology of Franz Jozef Land – an introduction. ‒ In: Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Northern Barents Sea Geotraverse. ‒ Ed. by A. Solheim, E. Musatov, N. Heintz, (Norsk Polarinstitutt Meddelelser, Oslo, Norway. 1998. Vol. 151). P. 10–117.
- Dibner V.D., Andreichev V.L., Tarakhovsky A.N., Shkola I.V. Timing of plateau basalts. Geology of Franz Jozef Land. ‒ Ed. by V.D. Dibner, (Norsk Polarinstitutt Meddelelser, Oslo, Norway. 1998. Vol. 146). 190 p.
- Dockman D.M., Pearson D.G., Heaman L.M., Gibson S.A., Sarkar C. Timing and origin of magmatism in the Sverdrup Basin, Northern Canada—implications for lithospheric evolution in the High Arctic Large Igneous Province (HALIP) // Tectonophysics. 2018. Vol. 742–743. P. 50–65. doi: 10.1016/j.tecto.2018.05.010
- Donelick R.A., Miller D.S. Enhanced TINT fission track densities in low spontaneous track density apatites using 252Cf-derived fission fragment tracks: A model and experimental observations // Nuclear Tracks and Radiation Measurements. 1991. Vol. 18. P. 301–307.
- Donelick R.A., O’Sullivan P.B., Ketcham R.A. Apatite fission-track analysis. // Rev. Mineral. and Geochem. 2005. Vol. 58. P. 49–94.
- Dore A. The structural foundation and evolution of Mesozoic seaways between Europe and Arctic // Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991. Vol. 87. P. 441–492.
- Dore A.G., Lundin E.R., Gibbons A., Somme T.O., Torudbakken B.O. Transform margins of the Arctic: A synthesis and re-evaluation. ‒ In: Transform Margins: Development, Controls and Petroleum Systems. ‒ Ed. by M. Nemcok, S. Rybar, S.T. Sinha, S.A. Hermeston, L. Ledvenyiove, (Geol. Soc. London. Spec. Publ. 2016. Vol. 431). P. 63–94. Doi: http://dx.doi.org/10.1144/SP431.8
- Dorr N., Lisker F., Clift P.D., Carter A., Gee D.G., Tebenkov A.M., Spiegel C. Late Mesozoic Cenozoic exhumation history of northern Svalbard and its regional significance: Constraints from apatite fission track analysis // Tectonophysics. 2012. Vol. 514–517. P. 81–92. Doi: https://doi.org/10.1016/j.tecto.2011.10.007
- Dorr N., Lisker F., Piepjohn K., Spiegel C. Cenozoic development of northern Svalbard based on thermochronological data // Terra Nova. 2019. Vol. 31. No. 3. P. 306–315. Doi: https://doi.org/10.1111/ter.12402
- Døssing A., Hopper J., Olesen A., Halpenny J. New aero-geophysical results from the Arctic Ocean, north of Greenland: Implications for Late Cretaceous rifting and Eurekan compression // Geochem. Geophys. Geosyst. 2013. Vol. 14. No. 10. P. 4044–4065.
- Drachev S.S., Malyshev N.A., Nikishin A.M. Tectonic history and petroleum geology of the Russian Arctic Shelves: An overview. ‒ In: Petroleum Geology: From Mature Basins to New Frontiers. ‒ Ed. by B.A. Vining, S.C. Pickering, (Proc. the 7th Petrol. Geol. Conf., Geol. Soc. London. 2010). P. 591–619. Doi: http://dx.doi.org/10.1144/0070591
- Drachev S.S., Shkarubo S.I. Tectonics of the Laptev Shelf, Siberian Arctic. ‒ In: Circum-Arctic Lithosphere Evolution. ‒ Ed.by V. Pease, B. Coakley, (Geol. Soc., London, Spec. Publ. 2018. Vol. 460). P. 263–283. Doi: 10.1144/sp460.15' target='_blank'>http://doi: 10.1144/sp460.15
- Dypvik H., Fjellsa B., Pcelina T., Sokolov A., Raheim A. The diagenetic of the Triassic succession of Franz Josef Land. ‒ In: Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Northern Barents Sea Geotraverse. ‒ Ed. by A. Solheim, E. Musatov, N. Heintz, (Norsk Polarinstitutt Meddelelser, Oslo, Norway.1998. Vol. 151). P. 83–104.
- Dypvik H., Sokolov A., Pcelina T., Fjellsa B., Bjærke T., Korchinskaya M., Nagy J. The Triassic succession of the Franz Josef Land, stratigraphy and sedimentology of three wells from Alexandra, Hayes and Graham Bell Islands. ‒ In: Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Northern Barents Sea Geotraverse. ‒ Ed. by A. Solheim, E. Musatov, N. Heintz, (Norsk Polarinstitutt Meddelelser, Oslo, Norway. 1998. Vol . 151). P. 50–82.
- Dumitru T.A. A new computer-automated microscope stage system for fission track analysis // Nuclear Tracks and Radiation Measurements. 1993. Vol. 21. P. 575‒580.
- Dumitru T.A. Fission-tract geochronology. ‒ In: Quaternary Geochronology: Methods and Applications. ‒ Ed. by J.S. Noller, J.M. Sowers, W.R. Lettis, (AGU, Geophys. Monogr. Ser., AGU Reference Shelf 4, Washington, D.C., USA. 2000). P. 131–155. Doi: http://dx.doi.org/10.1029/RF004p0131
- Eldholm O., Coffin M.F. Large igneous provinces and plate tectonics. ‒ In: The History and Dynamics of Global Plate Motions. ‒ Rd. by M.A. Richards, R.G. Gordon, R.D. van der Hilst, (AGU, Washington, D.C., USA. 2000). P. 309–326. Doi: https://doi.org/10.1029/GM121p0309
- Embry A.F. Mesozoic history of the Arctic Islands. ‒ In: Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland. ‒ Ed. by H.P. Trettin, (Boulder, Colorado. GSA. “Geology of North America”. Vol. E). P. 369–433.
- Embry A.F., Osadetz K.G. Stratigraphy and tectonic significance of Cretaceous volcanism in the Queen Elizabeth Islands, Canadian Arctic Archipelago // Can. J. Earth Sci. 1988. Vol. 25. P. 1209–1219.
- Ernst R.E. Large igneous provinces. ‒ London: Cambridge University Press, 2014. 653 p. Doi: https://doi.org/10.1017/CBO9781139025300
- Estrada S. Geochemical and Sr‒Nd isotope variations within Cretaceous continental flood-basalt suites of the Canadian High Arctic, with a focus on the Hassel Formation basalts of northeast Ellesmere Island // Int. J. Earth Sci. 2015. Vol. 104. No. 8. P. 1981–2005.
- Estrada S., Henjes-Kunst F. 40Ar-39Ar and U-Pb dating of Cretaceous continental rift-related magmatism on the northeast Canadian Arctic margin // Z Zeitschrift der Deutschen Gesellschaft für Geowissenschaften. 2013. Vol. 164. P. 107–130.
- Evangelatos J., Funck T., Mosher D.C. The sedimentary and crustal velocity structure of Makarov Basin and adjacent Alpha Ridge // Tectonophysics. 2017. Vol. 696–697. P. 99–114. Doi: https://doi.org/10.1016/j.tecto.2016.12.026
- Faleide J.I., Bjørlykke K., Gabrielsen R.H. Geology of the Norwegian Continental Shelf. ‒ In: Petroleum Geoscience. ‒ Ed.by K. Bjørlykke, (Springer. Berlin‒Heidelberg. 2015). P. 467‒499. Doi: https://doi.org/10.1007/978-3-642-34132-8_25
- Faleide J.I., Tsikalas F., Breivik A.J., Mjelde R., Ritzmann O., Engen Ø., Wilson J., Eldholm O. Structure and evolution of the continental margin off Norway and the Barents Sea // Episodes. 2008. Vol. 31. P. 82–91.
- Fitzgerald P.G., Gleadow A.J.W. New approaches in fission track geochronology as a tectonic tool: Examples from the Transantarctic Mountains // Nuclear Tracks and Radiation Measurements. 1990. Vol. 17. No. 3. P. 351–357. Doi: http://dx.doi.org/10.1016/1359-0189(90)90057-5
- Fitzgerald P.G., Malusà M.G. Concept of the exhumed partial annealing (retention) zone and age-elevation profiles in thermochronology. ‒ In: Fission-Track Thermochronology and Its Application to Geology. ‒ Ed. by M.G. Malusà, P.G. Fitzgerald, (Springer Textbooks in Earth Sci., Geogr. and Environ., Berlin, Germany. 2019). P. 165–189. Doi: https://doi.org/10.1007/978-3-319-89421-8_9
- Fitzgerald P.G., Sorkhabi R.B., Redfield T.F., Stump E. Uplift and denudation of the central Alaska Range; a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters // J. Geophys. Res. 1995. Vol. 100. P. 20175‒20191.
- Gaina C., Gernigon L., Ball P. Paleocene–recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent // J. Geol. Soc. 2009. Vol. 166. No. 4. P. 601–616.
- Gaina C., Roest W.R., Müller R.D. Late Cretaceous‒Cenozoic deformation of northeast Asia // Earth Planet. Sci. Lett. 2002. Vol. 197. P. 273–286.
- Galbraith R.F. On statistical models for fission track counts // Math. Geol. 1981. Vol. 13. P. 471‒478.
- Galbraith R.F., Laslett G.M. Statistical models for mixed fission track ages // Nuclear Tracks and Radiation Measurements. 1993. Vol. 21. P. 459‒470.
- Gallagher K., Brown R., Johnson C. Fission track analysis and its applications to geological problems // Ann. Rev. Earth and Planet. Sci. 1998. Vol. 26. P. 519‒572.
- Gernigon L., Franke D., Geoffroy L., Schiffer C., Foulger G.R., Stoker M. Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea // Earth-Sci. Rev. 2020. Vol. 206. Art. 102839. doi: 10.1016/j.earscirev.2019.04.01110.1016
- Gleadow A.J.W., Duddy I.R., Green P.F., Lovering J.F. Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis // Contrib. Mineral. Petrol. 1986. Vol. 94. No. 4. P. 405–415. Doi: http://dx.doi.org/10.1007/BF00376334
- Gottlieb E.S., Miller E.L., Andronikov A., Brumley K., Mayer L.A., Mukasa S.B. Cretaceous Arctic magmatism: Slab vs. plume? Or slab and plume? ‒ AGU Fall Meeting. San-Francisco, CA, USA, December 13-17, 2010. Abstr. T31A-2139.
- Grachev A.F. Geodynamics of the transitional zone from the Moma Rift to the Gakkel Ridge. / Watkins J.S., Drake C.L. (Eds.) Studies in Continental Margin Geology // Am. Assoc. Petr. Geol. Mem. 1983. Vol. 34. P. 103–114.
- Grachev A.F., Arakelyantz M.M., Lebedev V.A., Musatov E.E., Stolbov N.M. New K‒Ar ages for basalts from Franz Josef Land // Rus. J. Earth Sci. 2001. Vol. 3. P. 79–82.
- Craddock W.H., Houseknecht D.W. Cretaceous–Cenozoic burial and exhumation history of the Chukchi shelf, offshore Arctic Alaska // Am. Assoc. Pet. Geol. Bull. 2016. No. 100. P. 63–100. Doi: https://doi.org/10.1306/09291515010
- Green P.F. A new look at statistics in fission-track dating // Nuclear Tracks and Radiation Measurements. 1981. Vol. 5. P. 77‒86.
- Green P.F., Duddy I.R., Gleadow A.J.W., Lovering J.F. Apatite fission-track analysis as a paleotemperature indicator for hydrocarbon exploration. ‒ In: Thermal History of Sedimentary Basins: Methods and Case Histories. ‒ Ed. by N.D. Naeser, T.N. McCulloh, (Springer, NY., DC, USA. 1989). P. 181–195. Doi: http://dx.doi.org/10.1007/978-1-4612-3492-0_11
- Gregersen U., Hopper J.R., Knutz P.C. Basin seismic stratigraphy and aspects of prospectivity in the NE Baffin Bay, Northwest Greenland // Marin. Petrol. Geol. 2013. Vol. 46. P. 1–18.
- Grist A.M., Zentilli M. The thermal history of the Nares Strait, Kane Basin, and Smith Sound region in Canada and Greenland: constraints from apatite fission-track and (U–Th–Sm)/He dating // Can. J. Earth Sci. 2005. Vol. 42. P. 1547–1569. Doi: https://doi.org/10.1139/e05-058
- Harrison J.C., Brent T.A., Oakey G.N. Baffin Fan and its inverted rift system of Arctic Eastern Canada: Stratigraphy, tectonics and petroleum resource potential // Geol. Soc. Mem. 2011. Vol. 35. P. 595–626. Doi: https://doi.org/10.1144/M35.40
- Hasebe N., Barbarand J., Jarvis K., Carter A., Hurford A.J. Apatite fission-track chronometry using laser ablation ICP-MS // Chem. Geol. 2004. Vol. 207. P. 135–145.
- Homza T.X., Bergman S.C. A Geologic interpretation of the Chukchi Sea petroleum province: Offshore Alaska, USA / Am. Ass. Petrol. Geol. 2019. Vol. 119. 334 p. Doi: https://doi.org/10.1306/AAPG119
- Hosseinpour M., Muller R.D., Williams S.E., Whittaker J.M. Full-fit reconstruction of the Labrador Sea and Baffin Bay // Solid Earth. 2013. Vol. 4. P. 461–479. Doi: https://doi.org/10.5194/se-4-461-2013
- Hurford A.J., Green P.F. The zeta age calibration of fission-track dating // Chem. Geol. 1983. Vol. 41. P. 285‒317.
- Jackson H.R., Dickie K., Marillier F. A seismic reflection study of northern Baffin Bay: implication for tectonic evolution // Can. J. Earth Sci. 1992. Vol. 29. No. 11. P. 2353–2369.
- Jackson H.R., Mudie P.J., Blasco S.M. Initial geological report on CESAR: The Canadian Expedition to Study the Alpha Ridge. ‒ Geol. Surv. Can. 1985. 177 p.
- Japsen P., Green P.F., Chalmers J.A. Thermo-tectonic development of the Wandel Sea Basin, North Greenland // GEUS Bull. 2021. Vol. 45. No. 2. Art. 5298. Doi: https://doi.org/10.34194/geusb.v45.5298
- Japsen P., Green P.F., Bonow J.M., Bjerager M., Hopper J.R. Episodic burial and exhumation in North-East Greenland before and after opening of the North-East Atlantic // GEUS Bull. 2021. Vol. 45. No. 2. Art. 5299. https://doi.org/10.34194/geusb.v45.5299
- Jakobsson M., Mayer L.A., Bringensparr C., and et al. The International Bathymetric Chart of the Arctic Ocean, Version 4.0 // Scientific Data. 2020. Art. 176. Doi: https://doi.org/10.1038/s41597-020-0520-9
- Jokat W. The sedimentary structure of the Lomonosov Ridge between 88◦N and 80◦N // Geophys. J. Int. 2005. Vol. 163. P. 698–726.
- Jokat W., Ickrath M. Structure of ridges and basins off East Siberia along 81 degrees N, Arctic Ocean // Marin. Petrol. Geol. 2015. Vol. 64. P. 222–232.
- Jokat W., Ickrath M., O’Connor J. Seismic transect across the Lomonosov and Mendeleev Ridges: Constraints on the geological evolution of the Amerasia Basin, Arctic Ocean // Geophys. Res. Lett. 2013. Vol. 40. No. 19. P. 5047–5051.
- Jokat W., Uenzelmann-Neben G., Kristoffersen Y., Rasmussen T.M. Lomonosov Ridge ‒ A double-sided continental margin // Geology. 1992. Vol. 20. P. 887–890.
- Jokat W., Weigelt E., Kristoffersen Y., Rasmussen T., Schöne T. New insights into the evolution of the Lomonosov Ridge and the Eurasia Basin // Geophys. J. Int. 1995. Vol. 122. P. 378–392.
- Ketcham R.A., Carter A., Donelick R.A., Barbarand J., Hurford A.J. Improved modeling of fission-track annealing in apatite // Am Mineral. 2007. Vol. 92. P. 799‒810. Doi: 10.2138/am.2007.2281' target='_blank'>https://doi: 10.2138/am.2007.2281
- Kingsbury C.G., Sandra L.K., Richard E.E., Soderlund U., Cousens B.L. U‒Pb geochronology of the plumbing system associated with the Late Cretaceous Strand Fiord Formation, Axel Heiberg Island, Canada: Part of the 130-90 Ma High Arctic large igneous province // J. Geodynam. 2017. Vol. 118. P.106‒117. Doi: https://doi.org/10.1016/j.jog.2017.11.001
- Knudsen C., Hopper J.R., Bierman P.R., Bjerager M., Funck T., Green P.F., Ineson J.R., Japsen P., Marcussen C., Sherlock S.C., Thomsen T.B. Samples from Lomonosov Ridge place new constraints on the geological evolution of Arctic Ocean. ‒ In: Circum-Arctic Lithosphere Evolution. ‒ Ed.by V. Pease, B. Coakley, (Geol. Soc. London. Spec. Publ. 2018. Vol. 460). P. 397–418. Doi: https://doi.org/10.1144/SP460.17
- Kleinspehn K.L., Teyssier C. Oblique rifting and the Late Eocene–Oligocene demise of Laurasia with inception of Molloy Ridge: Deformation of Forlandsundet Basin, Svalbard // Tectonophysics. 2016. Vol. 693. P. 363–377. Doi: https://doi.org/10.1016/j.tecto.2016.05.010
- Kristoffersen Y., Coakley B.J., Hall J.K., Edwards M. Mass wasting on the submarine Lomonosov Ridge, central Arctic Ocean // Marin. Geol. 2007. Vol. 243. P. 132–142.
- Kristoffersen Y., Nilsen H.E., Hall J.K. The High Arctic Large Igneous Province: first seismic-stratigraphic evidence for multiple Mesozoic volcanic pulses on the Lomonosov Ridge, central Arctic Ocean // J. Geol. Soc. 2023. Vol. 180. No. 5. P. 1‒17. Doi: https://doi.org/10.1144/jgs2022-153
- Larsen L.M., Heaman L.M., Creaser R.A., Duncan R.A., Frei R., Hutchison M. Tectonomagmatic events during stretching and basin formation in the Labrador Sea and the Davis Strait: Evidence from age and composition of Mesozoic to Palaeogene dyke swarms in West Greenland // J. Geol. Soc. 2009. Vol. 166. P. 999–1012.
- Laslett G.M., Kendall W.S., Gleadow A.J.W., Duddy I.R. Bias in the measurement of fission track length distributions // Nuclear Tracks and Radiation Measurements. 1982. Vol. 6. P. 79‒85.
- Matthews K., Maloney K.T., Zahirovic S., Williams S.E., Seton M., Müller R.D. Global plate boundary evolution and kinematics since the late Paleozoic // Global and Planet. Change. 2016. Vol. 146. P. 226–250. Doi: https://doi.org/10.1016/j.gloplacha.2016.10.002
- Miall A.D. Late Cretaceous and Tertiary basin development and sedimentation, Arctic Islands. ‒ In: Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland. ‒ Vol. 3. ‒ Geology of Canada. ‒ Ed. by H.P. Trettin, (Geol. Surv. of Canada. 1991). P. 437–458. Doi: https://doi.org/10.1130/DNAG-GNA-E.435
- Miller E.L., Akinin V.V., Dumitru T.A., Gottlieb E.S., Grove M., Meisling K., Seward G. Deformational history and thermochronology of Wrangel Island, East Siberian Shelf and coastal Chukotka, Arctic Russia. ‒ In: Circum-Arctic Lithosphere Evolution. ‒ Ed. by V. Pease, B. Coakley, (Geol. Soc. London. Spec. Publ. 2018. Vol. 460). P. 207–238. Doi: https://doi.org/10.1144/SP460.7
- Miller E.L., Meisling K.E., Akinin V.V., Brumley K., Coakley B.J., Gottlieb E.S., Hoiland C.W., O’Brien T.M., Soboleva A., Toro J. Circum-Arctic Lithosphere Evolution (CALE) Transect C: displacement of the Arctic Alaska–Chukotka microplate towards the Pacific during opening of the Amerasia Basin of the Arctic. ‒ In: Circum-Arctic Lithosphere Evolution. ‒ Ed. by V. Pease, B. Coakley, (Geol. Soc. London. Spec. Publ. 2018. Vol. 460). P. 57–120. Doi: https://doi.org/10.1144/SP460.9
- Miller E.L., Verzhbitsky V.E. Structural studies near Pevek, Russia: implications for formation of the East Siberian Shelf and Makarov Basin of the Arctic Ocean // Stephan Mueller Spec. Publ. 2009. Ser. 4. P. 223–241. Doi: https://doi.org/10.5194/smsps-4-223-2009
- Monger J.W.H., Gibson H.D. Mesozoic-Cenozoic deformation in the Canadian Cordillera: The record of a “Continental Bulldozer”? // Tectonophysics. 2019. Vol. 757. P. 153–169. Doi: https://doi.org/10.1016/j.tecto.2018.12.023
- Monger J.W.H., Price R.A., Tempelman-Kluit D.J. Tectonic accretion and the origin of the two major metamorphic and plutonic welts in the Canadian Cordillera // Geology. 1982. Vol. 10. P. 70–75. Doi: https://doi.org/10.1130/0091-7613(1982)10<70:TAATOO>2
- Mukasa S.B., Andronikov A., Brumley K., Mayer L.A., Armstrong A. Basalts from the Chukchi borderland: 40Ar/39Ar ages and geochemistry of submarine intraplate lavas dredged from the western Arctic Ocean // J. Geophys. Res.: Solid Earth. 2020. Vol. 125. Art. e2019JB017604. Doi: https://doi.org/10.1029/2019JB017604
- Muller R.D., Seton M., Zahirovic S., Williams S.E., Matthews K.J., Wright N.M., and et al. Ocean basin evolution and global scale plate reorganization events since Pangea breakup // Ann. Rev. Earth and Planet. Sci. 2016. Vol. 44. No. 1. P. 107–138. Doi: https://doi.org/10.1146/annurev-earth-060115-012211
- Nelson J.L., Colpron M., Israel S. The Cordillera of British Columbia, Yukon, and Alaska: Tectonics and metallogeny // Soc. Economic Geol. 2013. P. 53–109. Doi: https://doi.org/10.5382/SP.17.03
- Nikishin A.M., Gaina C., Petrov E.I. et al. Eurasia Basin and Gakkel Ridge, Arctic Ocean: Crustal asymmetry, ultra-slow spreading and continental rifting revealed by new seismic data // Tectonophysics. 2018. Vol. 746. P. 64–82.
- Nikishin A.M., Petrov E.I., Malyshev N.A., Ershova V.P. Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: link of geological history and geodynamics. // Geodyn. Tectonophys. 2017. Vol. 8. No. 1. P. 11–43. Doi: http://dx.doi.org/10.5800/ GT-2017-8-1-0231
- Nikishin A.M, Rodina E.A., Startseva K.F., Foulger G.R., Posamentier H.W., Afanasenkov A.P., Beziazykov A.V, Chernykh A.A., Petrov E.I., Skolotnev S.G., Verzhbitsky V.E., Yakovenko I.V. Alpha-Mendeleev Rise, Arctic Ocean: A double volcanic passive margin // Gondwana Research 2023. Vol. 120. P. 85‒110. Doi: https://doi.org/10.1016/j.gr.2022.10.010
- Oakey G.N., Chalmers J.A. A new model for the Paleogene motion of Greenland relative to North America: Plate reconstructions of the Davis Strait and Nares Strait regions between Canada and Greenland // J. Geophys. Res. Ser.B: Solid Earth. 2012. Vol. 117. Art. B10401. Doi: 10.1029/2011JB008942' target='_blank'>https://doi: 10.1029/2011JB008942
- Oakey G.N., Saltus R.W. Geophysical analysis of the Alpha-Mendeleev Ridge complex: Characterization of the high Arctic large Igneous Province // Tectonophysics. 2016. Vol. 691. P. 65–84. Doi: https://doi.org/10.1016/j.tecto.2016.08.005
- Oakey G.N., Stephenson R.A. Crustal structure of the Innuitian region of Arctic Canada and Greenland from gravity modelling: Implications for the Palaeogene Eurekan Orogen // Geophys. J. Int. 2008. Vol. 173. No. 3. P. 1039–1063.
- Okulitch A.V., Trettin H.P. Late Cretaceous-Early Tertiary deformation, Arctic Islands. ‒ In: Geology of the Inuitian Orogen and Arctic Platform of Canada and Greenland. ‒ Ed.by H.P. Trettin, (Geol. Surv. of Can. Ottawa, Ontario. 1991. Vol. 3. Ch. 17). P. 467–489.
- Osadetz K.G., Moore P.R. Basic volcanics in the Hassel Formation (Mid-Cretaceous) and associated intrusives, Ellesmere Island, District of Franklin, Northwest Territories. ‒ Geol. Surv. Can. 1988. Pap. 87‒21. P. 1–19.
- Piejohn K., von Gosen W., Tessensohn F. The Eurekan deformation in the Arctic: An outline // J. Geol. Soc. 2016. Vol. 173. No. 6. P. 1007‒1024. doi: 10.1144/jgs2016-081
- Phillips S.M. Deformation in a shear zone, Central Ellesmere Island, Canadian Arctic Archipelago:Iimplications for regional tectonics // Marin. Geol. 1990. Vol. 93. P. 385–400.
- Polteau S., Hendriks B.W.H., Planke S., Ganerшd M., Corfu F., Faleide J.I., and et al. The early cretaceous Barents Sea sill complex: Distribution, 40Ar/ 39Ar geochronology, and implications for carbon gas formation // Palaeogeogr., Palaeoclimatol., Palaeoecol. 2016. Vol. 441. P. 83–95. Doi: https://doi.org/10.1016/j.palaeo.2015.07.007
- Planke S., Christensen J., Polteau S., Myklebust R. Mid-Cretaceous source rock subcropping in the Baffin Bay. ‒ GEO ExPro. 2009. Vol. 6. No. 1. P. 6‒8.
- Prokopiev A.V., Ershova V.B., Anfinson O., Stockli D., Powell J., Khudoley A.K., Vasiliev D.A., Sobolev N.N., Petrov E.O. Tectonics of the New Siberian Islands archipelago: Structural styles and low temperature thermochronology // J. Geodynam. 2018. Vol. 121. P. 155–184.
- Prokopiev A., Khudoley A., Egorov A., Gertseva M., Afanasieva E., Sergeenko A., Ershova V., Vasiliev D. Late Cretaceous-Early Cenozoic indicators of continental extension on the Laptev Sea shore (North Verkhoyansk). ‒ Proc. “3P Arctic,” (Stavanger, Norway, October 14–18, 2013. Abstr.). 170 p.
- Reiners P.W., Brandon M.T. Using thermochronology to understand orogenic erosion // Ann. Rev. Earth and Planet. Sci. 2006. Vol. 34. P. 419–466. Doi: http://dx.doi.org/10.1146/annurev.earth.34.031405.125202
- Ricketts B.D. New Formations in the Eureka Sound Group, Canadian Arctic Islands. ‒ Geol. Surv. Can., Current Res.: Part B. 1986. Pap. No. 86–01B). P. 363–374.
- Roest W.R., Srivastava S.P. Sea-floor spreading in the Labrador Sea: A new reconstruction // Geology. 1989. Vol. 17. No. 11. P. 1000–1003. doi: 10.1130/0091-7613(1989)017<1000:SFSITL>2.3.CO;2
- Seton M., Müller R.D., Zahirovic S., Gaina C., Torsvik T., Shephard G., et al. Global continental and ocean basin reconstructions since 200 Ma // Earth Sci. Rev. 2012. Vol. 113. No. 3‒4. P. 212–270. Doi: https://doi.org/10.1016/j.earscirev.2012.03.002
- Shephard G.E., Müller R.D., Seton M. The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure // Earth Sci. Rev. 2013. Vol. 124. P. 148–183. Doi: https://doi.org/10.1016/j.earscirev.2013.05.012
- Skolotnev S., Aleksandrova G., Isakov T., Tolmacheva T., Kurilenko A., Raevskaya E., Rozhnov S., Petrov E., Korniychuk A. Fossils from seabed bedrocks: Implications for the nature of the acoustic basement of the Mendeleev Rise (Arctic Ocean) // Marin. Geol. 2019. Vol. 407. P. 148–163. Doi: https://doi.org/10.1016/j.margeo.2018.11.002
- Stephenson R.A., Embry A.F., Nakiboglu S.M., Hastaoglu M.A. Rift-initiated Permian to Early Cretaceous subsidence of the Sverdrup Basin. ‒ Sedimentary Basins and Basin-Forming Mechanisms. ‒ Ed. by C. Beaumont, A.J. Tankard, (Atlantic Geosci. Soc. Spec. Publ. 1987. Vol. 5). P. 213–231.
- Talwani M., Eldholm O. Evolution of the Norwegian-Greenland Sea // Bull. Geol. Soc. Am. 1977. Vol. 88. P. 969–999.
- Tarduno J.A., Brinkman D.B., Renne P.R., Cottrell R.D., Scher H., Castillo P. Evidence for extreme climatic warmth from Late Cretaceous arctic vertebrates // Science. 1998. Vol. 282. P. 2241–2243.
- Tessensohn F., Piepjohn K. Eocene compressive deformation in Arctic Canada, North Greenland and Svalbard and its plate tectonic causes // Polarforschung. 2000. Vol. 68. P. 121–124.
- Thorsteinsson R., Tozer E.T. Geology of the Arctic Archipelago. ‒ In: Geology and Economic Minerals of Canada. ‒ Ed. by R. J. W. Douglass, (Geol. Surv. Can. Economic Geol. Rep. 1970. Vol. 1). P. 547‒590.
- Torsvik T.H., Steinberger B., Shephard G.E., Doubrovine P.V., Gaina C., Domeier M., et al. Pacific-Panthalassic reconstructions: Overview, errata and the way forward // Geochem., Geophys., Geosyst. 2019. Vol. 20. P. 3659–3689. Doi: https://doi.org/10.1029/2019GC008402
- Trettin H.P. The Arctic Islands. ‒ In: The Geology of North America, An overview. ‒ Ed.by A.W. Bally, A.R. Palmer, (GSA. 1989. Vol. A. Ch.13). P. 349–370.
- Van Wagoner N.A., Williamson M.-C., Robinson P.T., Gibson I.L. First samples of acoustic basement recovered from the Alpha Ridge, Arctic Ocean: New constraints for the origin of the ridge // J. Geodynam. 1986. Vol. 6. P. 177–196.
- Villeneuve M., Williamson M.-C. 40Ar/39Ar dating of mafic magmatism from the Sverdrup Basin Magmatic Province. ‒ Ed.by R.A. Scott, D.K. Thurston, (Proc. the 4th Int. Conf. on Arctic Margins (ICAM IV), Anchorage, Alaska. USA. 2006). P. 206–215.
- Wessel P., Kroenke L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis // J. Geophys. Res. 2008. Vol. 113. B06101. Doi: https://doi.org/10.1029/2007JB005499
- Williamson M.-C., Kellett D., Miggins D., Koppers A., Carey R., Oakey G., Weis D., Jokat W., Massey E. Age and eruptive style of colcanic rocks dredged from the Alpha Ridge, Arctic Ocean // EGU General Assembly. 2019. Geophys. Res. Abstracts. Vol. 21. EGU2019-6336.
- Whittaker R.C., Hamann N.E., Pulvertaft T.C.R. A new frontier province offshore northern West Greenland: Structure, basin development and petroleum potential of the Melville Bay area // AAPG Bull. 1997. Vol. 81. P. 979–998.
- Worsley D., Agdestein T., Gjelberg J.G., Kirkemo K., Mørk A., Nilsson I., Olaussen S., Steel R.J., Stemmerik L. The geological evolution of Bjørnøya, Arctic Norway: implications for the Barents Shelf // Norw. J. Geol. 2001. Vol. 81. P. 195‒234.
Қосымша файлдар
