Geological position, structural manifestations of the Elbistan earthquake and tectonic comparison of two strongest seismic events 06.02.2023 in Eastern Türkiye

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Elbistan (Ҫardak) earthquake with magnitude Mw = 7.5 or 7.6 happened in Eastern Anatolia on 06.02.2023 at 10:24 UTC, following the strongest in the region of East Anatolian (Pazarçik) earthquake with Mw = 7.8 which occurred on the same day at 1:17 UTC to the south of the region. The Elbistan earthquake activated adjacent segments of the Ҫardak and Uluova faults with Quaternary left-lateral strike-slip displacements. The resulting seismic ruptures have a total length of 190 km, of which 148 km are represented by sinistral lateral slip. Their maximum amplitude of 7.84 m was recorded 8 km east of the epicenter. The strike-slip seismic ruptures of the Elbistan and East Anatolian earthquakes represent exposure of their focal zones on the land surface. Both earthquakes exceed average values of these parameters for continental earthquakes of strike-slip type in terms of focal zone sizes and amplitudes of seismic displacements. At the same time, both sources do not propagate deeper than the upper part of the crust (16–20 km).

Ophiolite complexes covering the same depths are widely spread in the area of focal zones of both earthquakes. Two maxima were found in the distribution of seismic strike-slip displacement along the epicentral zone of the Elbistan earthquake (i) amplitudes of 5.7–7.84 m in the Ҫardak fault zone and (ii) amplitudes of 3.5–5.1 m in the Uluova fault zone. Both maxima coincide to the areas of ophiolites or their contacts with basement rocks. In crystalline basement rocks, the sinistral strike-slip amplitudes are significantly reduced. We attribute the increased values of focal zone sizes and displacement amplitudes of both earthquakes to the rheological features of ophiolites, which increase a possibility of slip of rocks during seismic movements. We explain the fact that the sources of both earthquakes cover only the upper part of the crust, by the uplift of the top of rocks with reduced P-wave velocities, including the upper mantle and the lower part of the crust and interpreted as heated rocks with reduced strength.

Full Text

Restricted Access

About the authors

Ya. I. Trikhunkov

Geological Institute, Russian Academy of Sciences

Author for correspondence.
Email: jarsun@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow

H. Ҫelik

Firat University

Email: jarsun@yandex.ru

Engineering Faculty, Department of Geological Engineering

Turkey, 231119 Elazig

V. S. Lomov

Geological Institute, Russian Academy of Sciences

Email: jarsun@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow

V. G. Trifonov

aGeological Institute, Russian Academy of Sciences

Email: jarsun@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow

D. M. Bachmanov

Geological Institute, Russian Academy of Sciences

Email: jarsun@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow

Y. Karginoglu

Firat University

Email: jarsun@yandex.ru

Engineering Faculty, Department of Geological Engineering

Turkey, 231119 Elazig

S. Yu. Sokolov

Geological Institute, Russian Academy of Sciences

Email: jarsun@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow

References

  1. Иванова Т.П., Трифонов В.Г. Новые аспекты соотношений тектоники и сейсмичности // ДАН. 1993. Т. 331. № 5. С. 587–589.
  2. Книппер А.Л., Сатиан М.А., Брагин Н.Ю. Верхнетриасовые–нижнеюрские вулканогенно-осадочные отложения Старого Зодского перевала (Закавказье) // Стратиграфия. Геологическая корреляция. 1997. Т. 5. № 3. С. 58–65.
  3. Краснопевцева Г.В. Глубинное строение Кавказского сейсмоактивного региона. ‒ Под ред. Е.В. Каруса. ‒ М.: Наука, 1984. 109 с.
  4. Неотектоника, современная геодинамика и сейсмическая опасность Сирии. ‒ Под ред. В.Г. Трифонова. ‒ М.: ГЕОС, 2012. 216 с.
  5. Соколов С.Ю. Глубинное геодинамическое состояние и его сопоставление с поверхностными геолого-геофизическими параметрами вдоль субширотного разреза Евразии // Геодинамика и тектонофизика. 2019. Т. 10. № 4. С. 945–957.
  6. Трифонов В.Г., Соколов С.Ю., Соколов С.А., Хессами Х. Мезозойско‒кайнозойская структура Черноморско–Кавказско–Каспийского региона и ее соотношение со строением верхней мантии // Геотектоника. 2020. № 3. С. 55–81.
  7. Челик Х., Трихунков Я.И., Соколов С.А., Трифонов В.Г., Зеленин Е.А., Каргиноглу Ю., Юшин К.И., Ломов В.С., Бачманов Д.М. Тектонические аспекты Восточно-Анатолийского землетрясения 06.02.2023 г. в Турции // Физика Земли. 2023. № 6. С. 5–23.
  8. Akinci A.C., Robertson A.H.F., Ünlügenç, U.C. Sedimentary and structural evidence for the Cenozoic subduction-collision history of the Southern Neotethys in NE Turkey (Ҫağlayancerit area) // Int. J. Earth Sci. (Geol. Rundsch.). 2016. V. 105. P. 315–337.
  9. Balkaya M., Akyüz S.H., Ӧzden S., Paleoseismology of the Sürgü and Çardak faults – splays of the Eastern Anatolian Fault Zone, Türkiye // Turkish J. Earth Sci. 2023. V. 32. P. 402–420.
  10. Consortium for Spatial Information (CGIAR-CSI), SRTM 90m Digital Elevation Database v.4.1 (2017). Available from: http://srtm.csi.cgiar.org/ (Accessed March 10, 2010).
  11. Çolak S., Aksoy E., Koçyiğit A., İnceöz M. The Palu-Uluova Strike-Slip Basin in the East Anatolian Fault System, Turkey: Its Transition from the Palaeotectonic to Neotectonic Stage // Turkish J. Earth Sci. Vol. 21. 2012. P. 547–570.
  12. Danelian, T., Galoyan, G., Rolland, Y., Sosson, M. Palaeontological (Radiolarian) Late Jurassic age constraint for the Stepanavan ophiolite (Lesser Caucasus, Armenia) // Bull. Geol. Soc. Greece. 2007. V. 40. P. 31–38.
  13. Duman T.Y., Emre Ö. The East Anatolian fault: Geometry, segmentation and jog characteristics // Geol. Soc. London Spec. Publ. 2013. Vol. 372. P. 495–529. https://doi.org/10.1144/SP372.14
  14. Emre O., Duman T.Y., Ozalp S., Elmasi H., Olgun Ş., Şaroğlu F. Active fault map of Turkey. ‒ (General Directorate of Miner. Res. and Explor., Ankara, Turkey. 2013).
  15. Galoyan G., Rolland Y., Sosson M., Corsini M., Melkonian R. Evidence for superposed MORB, oceanic plateau and volcanic arc series in the Lesser Caucasus (Stepanavan, Armenia) // Comptes Rendus Geosci. 2007. V. 339. P. 482–492.
  16. Geological Map of Turkey, Sheets Adana, Erzurum, Hatay, Kars, Samsun, Sivas, Trabson, Van. ‒ Scale 1 : 500,000. ‒ (General Directorate of Miner. Res. and Explor., Ankara, Turkey. 2002).
  17. Herece E. Atlas of the East Anatolian Fault. ‒ (General Directorate of Miner. Res. and Explor. (MTA), Spec. Publ. Ser., Ankara, Turkey. 2008), 359 p.
  18. Hessami K., Koyi H.A., Talbot C.J., Tabasi H., Shabanian E. Progressive unconformities within an evolving foreland fold-thrust belt Zagros Mountains // J. Geol. Soc. London. 2001. Vol. 158. P. 969–981.
  19. HGM-GEOPORTAL, Republic of Turkey Ministry of National Defense General Directorate of mapping, https://geoportal.harita.gov.tr/ (Accessed April 5, 2023).
  20. Kahramanmaraş – Gaziantep Turkey M = 7.7 Earthquake, February 6, 2023 (04:17 GMT+03:00). ‒ (Boğazici Univ. Kandilli Observatory. Sci. Rep. 2023), 41 p. https://eqe.bogazici.edu.tr/sites/eqe.boun.edu.tr/files/kahramanmaras-gaziantep_earthquake_06-02-2023_04.17-bogazici_university_earthquake_engineering_department_v6.pdf (Accessed October, 2023).
  21. Koç A., Kaymakcı N. Kinematics of Sürgü Fault Zone (Malatya, Turkey): A remote sensing study // J. Geodynam. 2013. Vol. 65. P. 292–307.
  22. Li C., van der Hilst R.D., Engdahl E.R., Burdick S. A new global model for P-wave speed variations in Earth’s mantle // Geochem. Geophys. Geosyst. 2008. V. 9. № 5. P. 1–21.
  23. Observatoire Geoscope, http://geoscope.ipgp.fr/index.php/en/catalog/earthquake-description?seis=us6000jlqa (Accessed October, 2023).
  24. Robertson A.H.F., Parlak O, Ustaömer T. Overview of the Paleozoic – Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria) // Petrol. Geosci. 2012. Vol. 18. P. 381–404.
  25. Rolland Y., Galoyan G., Sosson M., Melkonyan R., Avagyan A. The Armenian ophiolite: insights for Jurassic back-arc formation, Lower Cretaceous hot spot magmatism, and Upper Cretaceous obduction over the South Armenian Block. ‒ In: Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. ‒ Ed. by M. Sosson, N. Kaymakci, R.A. Stephenson, F. Bergerat, V. Starostenko, (Geol. Soc. London. Spec. Publ. 2010. V. 340), P. 353–382.
  26. Sengör A.M.C., Yilmaz Y. Tethyan evolution of Turkey: a plate tectonic approach // Tectonophysics. 1981. V. 75. P. 181–241.
  27. Sosson M., Rolland Y., Muëller C., Danelian T., Melkonyan R., Kekelia S., Adamia S., Babazadeh V., Kangarli T., Avagyan,A., Galoyan G., Mozar J. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. ‒ In: Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. ‒ Ed. by M. Sosson, N. Kaymakci, R.A. Stephenson, F. Bergerat, V. Starostenko, (Geol. Soc. London. Spec. Publ. 2010. V. 340), P. 329–352.
  28. Trifonov V.G., Ҫelik H., Simakova A.N., Bachmanov D.M., Frolova P.D., Trikhunkov Ya.I., Tesakov A.S., Titov V.M., Lebedev V.A., Ozherelyev D.V., Latyshev A.V., Sychevskaya E.K. Pliocene – Early Pleistocene history of the Euphrates valley applied to Late Cenozoic environment of the northern Arabian Plate and its surrounding, eastern Turkey // Quaternary Int. 2018. V. 493. P. 137–165.
  29. USGS Earthquake Hazard Program https: //earthquake.usgs.gov/earthquakes/eventpage/us6000jlqa/executive (Accessed October, 2023).
  30. Wells D.L., Coppersmith K.J. New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement // Bull. Seismol. Soc. Am. 1994. V. 84. P. 974–1002.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Zones of active faults in Eastern Anatolia (relief according to [10]). Zones: EAFZ – East Anatolian; MAFZ – Malatya; CHFZ – Chardak; UOFZ – Uluova; SUFZ – Surgu. Depressions: Ch – Chardak; Ma – Malatya. Shown are: fault segments activated by the earthquakes of 06.02.2023 (red); faults and their segments not affected by these earthquakes (black). Observation points (dots) and trenching points (dashes) are indicated with their numbers (Arabic numerals with underlining) or maximum amplitudes (L) of left-lateral displacements (m). The epicenter of the Elbistan earthquake is indicated (asterisk). The inset shows the zones (Arabic numerals): 1 – EAFZ; 2 – Deliler; 3 – Malatya; 4 – North Anatolian; 5 – Ovacik; 6 – Sariz; 7 – Uluova; 8 – Chardak. The epicenters of the Elbistan and Pazardzhik (East Anatolian, Kahramanmarash) earthquakes are shown (asterisks).

Download (523KB)
3. Fig. 2. Relationship between outcrops of crystalline basement, ophiolites and active faults of the internal segments of the Alpine-Himalayan belt in Eastern Anatolia and Transcaucasia (according to [16]). Zones: EAFZ – East Anatolian; NAFZ – East Anatolian; MAFZ – Malatya; CHFZ – Chardak; UOFZ – Uluova. Designated: CG – Caglayanserit section with the Neotethys ophiolite suture. Inset: sutures of Eastern Turkey, Transcaucasia and Northwestern Iran, which separate plates and microplates. 1-2 – ophiolites: 1 – exposed, 2 – inferred beneath young deposits; 3 – complex of Middle Triassic–Cretaceous deposits; 4 – outcrops of metamorphic basement (Malatya Formation in Taurides); 5 – lower horizons of the platform cover of the Arabian Plate (Cambrian–Ordovician); 6 – Maastrichtian and Cenozoic; 7 – faults; 8 – active faults: a – not affected on 06.02.2023, b – segments activated on 06.02.2023; 9 – main sutures (Izmir–Ankara–Erzincan–Sevan and Southern Taurus); 10–11 – sutures: 10 ‒ separating microplates located between the main sutures, 11 – supposed

Download (747KB)
4. Fig. 3. Segment of the Chardak fault activated as a result of the Elbistan earthquake (relief according to [10]). Faults: CHFZ – Chardak; UOFZ – Uluova. Depressions: Ch – Chardak, Gö – Göksun. Shown are: seismic ruptures with established left-lateral displacements (lines in red); suspected faults activated as a result of the Elbistan earthquake (dashed red line). Indicated are: observation points (points) with their numbers (Arabic numerals with underlining) and displacement amplitudes (m): L – left-lateral, H – vertical (indicating the raised wing); the epicenter of the Elbistan earthquake (asterisk).

Download (348KB)
5. Fig. 4. Seismogenic faults in the Esendere River valley at observation point 114. See Fig. 3 for the location of observation point 114. (a) ‒ slip plane with left-lateral strike-slip striations on the surface of the northern flank of the Chardak fault in the thickness of cataclastically altered mudstones from the volcanogenic-sedimentary ophiolite association; (b) ‒ left-lateral displacement of the river bank by 5.90 m at an azimuth of 85° fault strike, measured along the rear suture of the bank; (c) ‒ left-lateral reverse-strike-slip displacement of the valley wall and the river bed along the Chardak fault with an uplift of the southern flank by 0.9 m. Material complexes: MZ oph ‒ Mesozoic ophiolites; MZ mr – Mesozoic marbles. Shown: reliable (red line) and suspected (red dotted line) seismic faults. Designated: fault wing shifted toward the observer (dot in red circle); fault wing shifted in the direction opposite to the observer (crossing out in red circle).

Download (940KB)
6. Fig. 5. Chardak fault zone in the vicinity of the village of Karatut at observation point 115. The position of observation point 115 ‒ see Fig. 3. (a) – modern seismic rupture (line in red); (b) – traces of earlier displacements of different ages (lines in black). Designated: the wing of the fault, shifted towards the observer (dot in a red circle); the wing of the fault, shifted in the direction opposite to the observer (crossing out in a red circle).

Download (904KB)
7. Fig. 6. Material complexes of the Elbistan earthquake area. Zones: CHFZ – Çardak; UOFZ – Uluova; EAFZ – East Anatolian; MAFZ – Malatya; SUFZ – Sürgu. Depressions: Gö – Göksun; Ch – Çardak; Do – Doğanşehir; Ma – Malatya. The following are marked: observation points (dots) indicating the amplitudes (L) of left-lateral strike-slip displacements (m) characteristic of different fault segments; the epicenter of the Elbistan earthquake (asterisk). 1–2 – ophiolites: 1 – on the day surface, 2 – assumed to be beneath the cover of young sediments; 3 – metamorphic rocks of the basement (Malatya Formation); 4 – sedimentary and volcanic rocks of the Mesozoic‒Cenozoic

Download (300KB)
8. Fig. 7. Displacement zone along the Uluova fault segment activated by the Elbistan earthquake (relief according to [10]). Faults: UOFZ ‒ Uluova; CHFZ – Chardak. Depressions: Do – Doganşehir, Ma – Malatya. Shown are: seismic ruptures with established left-lateral displacements (lines in red); suspected faults activated by the Elbistan earthquake (dashed lines in red). Indicated are: observation points (dots) with their numbers (Arabic numerals with underlining) and displacement amplitudes (m): L – left-lateral, H – vertical (indicating the raised wing).

Download (428KB)
9. Fig. 8. Left-lateral displacements along the Uluov fault. (a) – displacement of the landslide body by 5 m near the village of Chiglik at observation point 143; (b) – displacement of the roadbed and the zone of seismogenic dislocations at observation point 143. For the position of observation points 143 and 145, see Fig. 6.

Download (623KB)
10. Fig. 9. Relief manifestations of Quaternary left-lateral strike-slip displacements along the Chardak and Uluova faults (relief according to [10]). (a)–(c) ‒ observation points in the Chardak fault numbered: (a) – 111–113; (b) – 116–118; (c) – 122–126; (d) ‒ the Uluova fault to the east of observation point 157 (its position ‒ see Fig. 1). Position of observation points 111–126 ‒ see Fig. 3.

Download (508KB)
11. Fig. 10. Graph of distribution of left-lateral strike-slip displacements along Chardak and Uluova. The observation points 107, 110, 125, 134 and 143 are marked (Arabic numerals with underlining). Position of observation points under numbers: 107–125 ‒ see Fig. 3; 134–143 ‒ see Fig. 6. 1 – ophiolite outcrops; 2 – approximating curve

Download (146KB)
12. Fig. 11. Roof positions (km below sea level) of lower crust and upper mantle volumes with low P-wave velocities beneath the Caucasus, Transcaucasia, Eastern Turkey, Syria, Northern Iraq, and Northwestern Iran, calculated using the MITP08 seismic tomographic model [22]: (a) based on dVp = –0.37%; (b) based on dVp = –0.60%. Shown (color scale) are the roof depths of lower crust and upper mantle volumes with low P-wave velocities. 1–2 – active faults: 1 – largest, 2 – large; 3 – faults activated by the 06.02.2023 earthquakes.

Download (713KB)
13. Supplementary 1
Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».