Geological position, structural manifestations of the Elbistan earthquake and tectonic comparison of two strongest seismic events 06.02.2023 in Eastern Türkiye
- Authors: Trikhunkov Y.I.1, Ҫelik H.2, Lomov V.S.1, Trifonov V.G.3, Bachmanov D.M.1, Karginoglu Y.2, Sokolov S.Y.1
-
Affiliations:
- Geological Institute, Russian Academy of Sciences
- Firat University
- aGeological Institute, Russian Academy of Sciences
- Issue: No 3 (2024)
- Pages: 108-126
- Section: Articles
- URL: https://journals.rcsi.science/0016-853X/article/view/268384
- DOI: https://doi.org/10.31857/S0016853X24030054
- EDN: https://elibrary.ru/FGERZL
- ID: 268384
Cite item
Abstract
The Elbistan (Ҫardak) earthquake with magnitude Mw = 7.5 or 7.6 happened in Eastern Anatolia on 06.02.2023 at 10:24 UTC, following the strongest in the region of East Anatolian (Pazarçik) earthquake with Mw = 7.8 which occurred on the same day at 1:17 UTC to the south of the region. The Elbistan earthquake activated adjacent segments of the Ҫardak and Uluova faults with Quaternary left-lateral strike-slip displacements. The resulting seismic ruptures have a total length of 190 km, of which 148 km are represented by sinistral lateral slip. Their maximum amplitude of 7.84 m was recorded 8 km east of the epicenter. The strike-slip seismic ruptures of the Elbistan and East Anatolian earthquakes represent exposure of their focal zones on the land surface. Both earthquakes exceed average values of these parameters for continental earthquakes of strike-slip type in terms of focal zone sizes and amplitudes of seismic displacements. At the same time, both sources do not propagate deeper than the upper part of the crust (16–20 km).
Ophiolite complexes covering the same depths are widely spread in the area of focal zones of both earthquakes. Two maxima were found in the distribution of seismic strike-slip displacement along the epicentral zone of the Elbistan earthquake (i) amplitudes of 5.7–7.84 m in the Ҫardak fault zone and (ii) amplitudes of 3.5–5.1 m in the Uluova fault zone. Both maxima coincide to the areas of ophiolites or their contacts with basement rocks. In crystalline basement rocks, the sinistral strike-slip amplitudes are significantly reduced. We attribute the increased values of focal zone sizes and displacement amplitudes of both earthquakes to the rheological features of ophiolites, which increase a possibility of slip of rocks during seismic movements. We explain the fact that the sources of both earthquakes cover only the upper part of the crust, by the uplift of the top of rocks with reduced P-wave velocities, including the upper mantle and the lower part of the crust and interpreted as heated rocks with reduced strength.
Full Text

About the authors
Ya. I. Trikhunkov
Geological Institute, Russian Academy of Sciences
Author for correspondence.
Email: jarsun@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow
H. Ҫelik
Firat University
Email: jarsun@yandex.ru
Engineering Faculty, Department of Geological Engineering
Turkey, 231119 ElazigV. S. Lomov
Geological Institute, Russian Academy of Sciences
Email: jarsun@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow
V. G. Trifonov
aGeological Institute, Russian Academy of Sciences
Email: jarsun@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow
D. M. Bachmanov
Geological Institute, Russian Academy of Sciences
Email: jarsun@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow
Y. Karginoglu
Firat University
Email: jarsun@yandex.ru
Engineering Faculty, Department of Geological Engineering
Turkey, 231119 ElazigS. Yu. Sokolov
Geological Institute, Russian Academy of Sciences
Email: jarsun@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow
References
- Иванова Т.П., Трифонов В.Г. Новые аспекты соотношений тектоники и сейсмичности // ДАН. 1993. Т. 331. № 5. С. 587–589.
- Книппер А.Л., Сатиан М.А., Брагин Н.Ю. Верхнетриасовые–нижнеюрские вулканогенно-осадочные отложения Старого Зодского перевала (Закавказье) // Стратиграфия. Геологическая корреляция. 1997. Т. 5. № 3. С. 58–65.
- Краснопевцева Г.В. Глубинное строение Кавказского сейсмоактивного региона. ‒ Под ред. Е.В. Каруса. ‒ М.: Наука, 1984. 109 с.
- Неотектоника, современная геодинамика и сейсмическая опасность Сирии. ‒ Под ред. В.Г. Трифонова. ‒ М.: ГЕОС, 2012. 216 с.
- Соколов С.Ю. Глубинное геодинамическое состояние и его сопоставление с поверхностными геолого-геофизическими параметрами вдоль субширотного разреза Евразии // Геодинамика и тектонофизика. 2019. Т. 10. № 4. С. 945–957.
- Трифонов В.Г., Соколов С.Ю., Соколов С.А., Хессами Х. Мезозойско‒кайнозойская структура Черноморско–Кавказско–Каспийского региона и ее соотношение со строением верхней мантии // Геотектоника. 2020. № 3. С. 55–81.
- Челик Х., Трихунков Я.И., Соколов С.А., Трифонов В.Г., Зеленин Е.А., Каргиноглу Ю., Юшин К.И., Ломов В.С., Бачманов Д.М. Тектонические аспекты Восточно-Анатолийского землетрясения 06.02.2023 г. в Турции // Физика Земли. 2023. № 6. С. 5–23.
- Akinci A.C., Robertson A.H.F., Ünlügenç, U.C. Sedimentary and structural evidence for the Cenozoic subduction-collision history of the Southern Neotethys in NE Turkey (Ҫağlayancerit area) // Int. J. Earth Sci. (Geol. Rundsch.). 2016. V. 105. P. 315–337.
- Balkaya M., Akyüz S.H., Ӧzden S., Paleoseismology of the Sürgü and Çardak faults – splays of the Eastern Anatolian Fault Zone, Türkiye // Turkish J. Earth Sci. 2023. V. 32. P. 402–420.
- Consortium for Spatial Information (CGIAR-CSI), SRTM 90m Digital Elevation Database v.4.1 (2017). Available from: http://srtm.csi.cgiar.org/ (Accessed March 10, 2010).
- Çolak S., Aksoy E., Koçyiğit A., İnceöz M. The Palu-Uluova Strike-Slip Basin in the East Anatolian Fault System, Turkey: Its Transition from the Palaeotectonic to Neotectonic Stage // Turkish J. Earth Sci. Vol. 21. 2012. P. 547–570.
- Danelian, T., Galoyan, G., Rolland, Y., Sosson, M. Palaeontological (Radiolarian) Late Jurassic age constraint for the Stepanavan ophiolite (Lesser Caucasus, Armenia) // Bull. Geol. Soc. Greece. 2007. V. 40. P. 31–38.
- Duman T.Y., Emre Ö. The East Anatolian fault: Geometry, segmentation and jog characteristics // Geol. Soc. London Spec. Publ. 2013. Vol. 372. P. 495–529. https://doi.org/10.1144/SP372.14
- Emre O., Duman T.Y., Ozalp S., Elmasi H., Olgun Ş., Şaroğlu F. Active fault map of Turkey. ‒ (General Directorate of Miner. Res. and Explor., Ankara, Turkey. 2013).
- Galoyan G., Rolland Y., Sosson M., Corsini M., Melkonian R. Evidence for superposed MORB, oceanic plateau and volcanic arc series in the Lesser Caucasus (Stepanavan, Armenia) // Comptes Rendus Geosci. 2007. V. 339. P. 482–492.
- Geological Map of Turkey, Sheets Adana, Erzurum, Hatay, Kars, Samsun, Sivas, Trabson, Van. ‒ Scale 1 : 500,000. ‒ (General Directorate of Miner. Res. and Explor., Ankara, Turkey. 2002).
- Herece E. Atlas of the East Anatolian Fault. ‒ (General Directorate of Miner. Res. and Explor. (MTA), Spec. Publ. Ser., Ankara, Turkey. 2008), 359 p.
- Hessami K., Koyi H.A., Talbot C.J., Tabasi H., Shabanian E. Progressive unconformities within an evolving foreland fold-thrust belt Zagros Mountains // J. Geol. Soc. London. 2001. Vol. 158. P. 969–981.
- HGM-GEOPORTAL, Republic of Turkey Ministry of National Defense General Directorate of mapping, https://geoportal.harita.gov.tr/ (Accessed April 5, 2023).
- Kahramanmaraş – Gaziantep Turkey M = 7.7 Earthquake, February 6, 2023 (04:17 GMT+03:00). ‒ (Boğazici Univ. Kandilli Observatory. Sci. Rep. 2023), 41 p. https://eqe.bogazici.edu.tr/sites/eqe.boun.edu.tr/files/kahramanmaras-gaziantep_earthquake_06-02-2023_04.17-bogazici_university_earthquake_engineering_department_v6.pdf (Accessed October, 2023).
- Koç A., Kaymakcı N. Kinematics of Sürgü Fault Zone (Malatya, Turkey): A remote sensing study // J. Geodynam. 2013. Vol. 65. P. 292–307.
- Li C., van der Hilst R.D., Engdahl E.R., Burdick S. A new global model for P-wave speed variations in Earth’s mantle // Geochem. Geophys. Geosyst. 2008. V. 9. № 5. P. 1–21.
- Observatoire Geoscope, http://geoscope.ipgp.fr/index.php/en/catalog/earthquake-description?seis=us6000jlqa (Accessed October, 2023).
- Robertson A.H.F., Parlak O, Ustaömer T. Overview of the Paleozoic – Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria) // Petrol. Geosci. 2012. Vol. 18. P. 381–404.
- Rolland Y., Galoyan G., Sosson M., Melkonyan R., Avagyan A. The Armenian ophiolite: insights for Jurassic back-arc formation, Lower Cretaceous hot spot magmatism, and Upper Cretaceous obduction over the South Armenian Block. ‒ In: Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. ‒ Ed. by M. Sosson, N. Kaymakci, R.A. Stephenson, F. Bergerat, V. Starostenko, (Geol. Soc. London. Spec. Publ. 2010. V. 340), P. 353–382.
- Sengör A.M.C., Yilmaz Y. Tethyan evolution of Turkey: a plate tectonic approach // Tectonophysics. 1981. V. 75. P. 181–241.
- Sosson M., Rolland Y., Muëller C., Danelian T., Melkonyan R., Kekelia S., Adamia S., Babazadeh V., Kangarli T., Avagyan,A., Galoyan G., Mozar J. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. ‒ In: Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. ‒ Ed. by M. Sosson, N. Kaymakci, R.A. Stephenson, F. Bergerat, V. Starostenko, (Geol. Soc. London. Spec. Publ. 2010. V. 340), P. 329–352.
- Trifonov V.G., Ҫelik H., Simakova A.N., Bachmanov D.M., Frolova P.D., Trikhunkov Ya.I., Tesakov A.S., Titov V.M., Lebedev V.A., Ozherelyev D.V., Latyshev A.V., Sychevskaya E.K. Pliocene – Early Pleistocene history of the Euphrates valley applied to Late Cenozoic environment of the northern Arabian Plate and its surrounding, eastern Turkey // Quaternary Int. 2018. V. 493. P. 137–165.
- USGS Earthquake Hazard Program https: //earthquake.usgs.gov/earthquakes/eventpage/us6000jlqa/executive (Accessed October, 2023).
- Wells D.L., Coppersmith K.J. New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement // Bull. Seismol. Soc. Am. 1994. V. 84. P. 974–1002.
Supplementary files
