The geological structure of the Gakkel Ridge: in the light of new geological and geophysical data
- Authors: Piskarev A.L.1,2, Kaminsky V.D.1, Kireev A.A.1, Poselov V.A.1, Savin V.A.1,2, Smirnov O.E.1, Bezumov D.V.1, Dergileva E.A.1, Ovanesian G.I.1, Ovsiannikova E.S.1,2, Elkina D.V.1
-
Affiliations:
- Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)
- St. Petersburg State University
- Issue: No 2 (2024)
- Pages: 54-71
- Section: Articles
- URL: https://journals.rcsi.science/0016-853X/article/view/263821
- DOI: https://doi.org/10.31857/S0016853X24020034
- EDN: https://elibrary.ru/EBAFYV
- ID: 263821
Cite item
Abstract
In 2011‒2020 the significant amount of seismic lines was carried out in the Eurasian Basin of the Arctic Ocean, which made it possible to study the structure of the junction zones of the Gakkel Ridge with the Nansen and Amundsen basins on a number of profiles. During 2019‒2020 15 sections of the Gakkel Ridge and its rift valley were studied using a sub-bottom profiler and seismo-acoustic profiling. New data on the relief of the basement, as well as the use of databases of bathymetry, gravity and magnetic anomalies updated at VNIIOkeangeologia, made it possible to calculate the magnetization of the rocks of the Gakkel Ridge along a number of profiles crossing the ridge, and to perform the model calculations of the Earth’s crust structure using a complex of geological and geophysical data in the area of the southeastern termination of the ridge. The Gakkel Ridge is a structure, the isolation of which refers to the time interval of Early Oligocene (34 Ma)–Early Miocene (23 Ma), in the process of radical restructuring of the spreading kinematics in the already existing ocean basins in the regions of the North Atlantic and the Arctic. The values of the calculated magnetization of the magnetic layer of the Earth’s crust show that this layer is partly composed of oceanic basalts, but mainly of deep-originated rocks, gabbro and peridotites, brought to the surface during detachment accompanying spreading. The Laptev Sea continuation of the rift valley of the Gakkel Ridge, to the south of the caldera, passes above many kilometers of sediments, at the base of which sedimentary rocks of Cretaceous and Late Jurassic age occur.
Full Text

About the authors
A. L. Piskarev
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia); St. Petersburg State University
Author for correspondence.
Email: apiskarev@gmail.com
Institute of Earth Sciences
Russian Federation, St. Petersburg; St. PetersburgV. D. Kaminsky
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)
Email: apiskarev@gmail.com
Russian Federation, St. Petersburg
A. A. Kireev
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)
Email: apiskarev@gmail.com
Russian Federation, St. Petersburg
V. A. Poselov
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)
Email: apiskarev@gmail.com
Russian Federation, St. Petersburg
V. A. Savin
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia); St. Petersburg State University
Email: apiskarev@gmail.com
Institute of Earth Sciences
Russian Federation, St. Petersburg; St. PetersburgO. E. Smirnov
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)
Email: apiskarev@gmail.com
Russian Federation, St. Petersburg
D. V. Bezumov
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)
Email: apiskarev@gmail.com
Russian Federation, St. Petersburg
E. A. Dergileva
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)
Email: apiskarev@gmail.com
Russian Federation, St. Petersburg
G. I. Ovanesian
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)
Email: apiskarev@gmail.com
Russian Federation, St. Petersburg
E. S. Ovsiannikova
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia); St. Petersburg State University
Email: apiskarev@gmail.com
Institute of Earth Sciences
Russian Federation, St. Petersburg; St. PetersburgD. V. Elkina
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)
Email: apiskarev@gmail.com
Russian Federation, St. Petersburg
References
- Арктический бассейн (геология и морфология). – Под ред. В.Д. Каминского – СПб: ВНИИОкеангеология, 2017. 291 с.
- Гордин В.М., Назарова Е.А., Попов К.В. Обобщенная петромагнитная модель океанской литосферы // Океанология, 1993. Т. 33. № 1. С. 139‒143.
- Дараган-Сущова Л.А., Петров О.В., Дараган-Сущов Ю.И., Леонтьев Д.И., Савельев И.Н. История формирования Евразийского бассейна Северного Ледовитого океана по сейсмическим данным // Региональная геология и металлогения. 2020. № 84. С. 25‒44.
- Дубинин Е.П., Ушаков С.А. Океанический рифтогенез. – М.: ГЕОС, 2001, 293 с.
- Карасик А.М. Основные особенности истории развития и структуры дна Арктического бассейна по аэромагнитным данным – В сб.: Морская геология, седиментология, осадочная петрография и геология океана. – Под ред. И.М. Варенцова – Л.: Недра, 1980. С. 178‒193.
- Кириллова-Покровская Т.А. Разработка актуализированной геологической модели моря Лаптевых и сопредельных глубоководных зон для уточненной оценки его углеводородного потенциала // Разведка и охрана недр. 2017. № 10. С. 30‒38.
- Кременецкий А.А., Пилицын А.Г., Веремеева Л.И., Морозов А.Ф., Петров О.В., Петров Е.И. Эволюция фундамента, рифтогенез и нефтегазоносность Циркумполярной Арктики // Региональная геология и металлогения. 2020. № 83. С. 14–32.
- Лобковский Л.И., Кононов М.В., Шипилов Э.В. Геодинамические причины возникновения и прекращения кайнозойских сдвиговых деформаций в Хатанга-Ломоносовской разломной зоне (Арктика) // ДАН. Науки о Земле. 2020. Т. 492. № 1. С. 82–87.
- Печерский Д.М., Тихонов Л.В. Петромагнитные особенности базальтов Атлантического и Тихого океанов // Изв. АН СССР. Сер. Физика Земли. 1983. № 4. С. 79‒90.
- Пискарев А.Л. Глубинная морская геофизика (развитие методов истолкования). – Л.: Недра, 1991. 188 с.
- Пискарев А.Л. Петрофизические модели земной коры Северного Ледовитого океана. – СПб.: ВНИИОкеангеология, 2004. 134 c. (Тр. НИИГА‒ВНИИОкеангеология. Т. 203).
- Пискарев А.Л., Аветисов Г.П., Киреев А.А., Казанин Г.С., Поселов В.А., Савин В.А., Смирнов О.Е., Элькина Д.В. Строение зоны перехода шельф моря Лаптевых‒ Евразийский бассейн, Северный Ледовитый океан // Геотектоника. 2018. № 6. С. 3‒24.
- Пискарев А.Л., Астафурова Е.Г., Беляев И.В., Жемчужников Е.Г., Подгорных Л.В. Долговременные вариации намагниченности и плотности океанической земной коры // ДАН. 1998. Т. 360. № 2. С. 257‒262.
- Природа магнитных аномалий и строение океанической коры. – Под ред. А.М. Городницкого – М.: ВНИРО, 1996. 282 с.
- Рекант П.В., Гусев Е.А. Структура и история формирования осадочного чехла рифтовой зоны хребта Гаккеля (Северный Ледовитый океан) // Геология и геофизика. 2016. Т. 57. № 9. С. 1634‒1640.
- Соколов С.Ю. Тектоника и геодинамика Экваториального сегмента Атлантики. – Дис. … д.г.-м.н. ‒ М.: ГИН РАН, 2018. 50 с.
- Barton P.J. The relationship between seismic velocity and density in the continental crust ‒ a useful constraint? // Geophys. J. Royal Astron. Soc. 1986. Vol. 87. Is.1. P. 195‒208.
- Blackman D.K., Canales J.P, Harding A. Geophysical signatures of oceanic core complexes // Geophys. J. Int. 2009. Vol. 178. Is. 2. P. 593–613.
- Bleil U., Peterson N. Variations in magnetization intensity and law-temperature titanomagnetite oxidation of ocean floor basalts // Nature. 1983. Vol. 301. P. 384‒388.
- Bonatti E. Serpentinite protrusions in the oceanic crust // Earth Planet. Sci. Lett. 1976. Vol. 32. Is. 2. P. 107‒113.
- Cannat M., Sauter D., Escartín J., Lavier L., Picazo S. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges // Earth Planet. Sci. Lett. 2009. Vol. 288. P. 174–183.
- Cochran J.R. Seamount volcanism along the Gakkel Ridge, Arctic Ocean // Geophys. J. 2008. Vol. 174. P. 1153–1173.
- Faust L.Y. Seismic velocity as a function of depth and geologic time // Geophysics. 1951. Vol. 16. P. 192‒206.
- Gaina C., Nikishin A.M., Petrov E.I. Ultraslow spreading, ridge relocation and compressional events in the East Arctic region: a link to the Eurekan orogeny? // Arktos. Vol. 16. No. 1. 2015. https://doi.org/10.1007/s41063-015-0006-8
- Gardner G.H.F., Gardner L.W., Gregory A.R. Formation velocity and density – the diagnostic basics for stratigraphic traps // Geophysics. 1974. Vol. 39. P. 770–780.
- Geologic structures of the Arctic Basin. – Ed. by A. Piskarev, V. Poselov, V. Kaminsky. – Springer Nature. 2019. 375 p.
- Gernigon L., Franke D., Geoffroy L., Schiffer C., Foulger G.R., Stoker M. Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea // Earth-Sci. Rev. 2020. Vol. 206. P. 1‒37.
- Glebovsky V.Y., Kaminsky V.D., Minakov A.N., Merkur’ev S.A., Childers V.A., Brozena J.M. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field // Geotectonics. 2006. Vol. 4. P. 21‒42. https://doi.org/10.1134/S0016852106040029
- Jokat W., Micksch U. Sedimentary structure of the Nansen and Amundsen basins, Arctic Ocean // Geophys. Res. Lett. 2004. Vol. 31. P. 1‒4.
- Jokat W., Lehmann P., Damaske D. et al. Magnetic signature of North-East Greenland, the Morris Jesup Rise, the Yermak Plateau, the central Fram Strait: Constraints for the rift/drift history between Greenland and Svalbard since the Eocene // Tectonophysics. 2015. Vol. 691. P. 98‒109.
- Jokat W., Schmidt-Aursch M.C. Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean // Geophys. J. 2007. Vol. 168. P. 983–998.
- Kos’ko M.K., Trufanov G.V. Middle Cretaceous to Eopleistocene sequences on the New Siberian islands: an approach to interpret offshore seismic // Marin. Petrol. Geol. 2002. Vol. 19. P. 901–919.
- Lutz R., Franke D., Berglar K., Heyde I., Schreckenberger B., Klitzke P., Geissler W. H. Evidence for mantle exhumation since the early evolution of the slowspreading Gakkel Ridge, Arctic Ocean // J. Geodynam. 2018. Vol. 118. P. 154‒165.
- McLeod C.J., Searle R.C., Murton B.J, Casey J.F., Mallows C., Unsworth S.C., Achenbach K.L., Harris M. Life cycle of oceanic core complexes // Earth Planet. Sci. Lett. 2009. Vol. 287. P. 333–344.
- Mosher D.C., Shimeld J.W., Hutchinson D., et al. Canada Basin revealed. ‒ In: Arctic Technology Conference Paper. ‒ (Houston. USA. 2012).
- Moran. K., Blackman J. Brinkhuis H., et al. The Cenozoic palaeoenvironment of the Arctic Ocean // Nature. 2006. Vol. 441. P. 601‒606.
- Nikishin A.M., Petrov E.I., Malyshev N.A., Ershova V.P. Rift systems of the Russian Eastern Arctic Shelf and Arctic deep water basins: Link between geological history and geodynamics // Geodynam. Tectonophys. 2017. Vol. 8. Iss. 1. P. 11–43.
- Okino K., Matsuda K., Christie D.M., Nogi Y., Koizumi K. Development of oceanic detachment and asymmetric spreading at the Australian‒Antarctic Discordance // Geochem., Geophys., Geosyst. 2004. Vol. 5. No. 12. P. 1‒22.
- Piskarev A., Elkina D. Giant caldera in the Arctic Ocean: Evidence of the catastrophic eruptive event // Nature Sci. 2017. Vol. 7. P. 1‒8.
- Poirier A., Hillaire-Marcel C. Improved Os-isotope stratigraphy of the Arctic Ocean // Geophys. Res. Lett. 2011. Vol. 38. L14607. 10.1029/2011GL047953' target='_blank'>https://doi: 10.1029/2011GL047953. 2011
- Reston T. J., Ranero C. R. The 3D geometry of detachment faulting at mid-ocean ridges // Geochem., Geophys., Geosyst. 2011. Vol. 12. No. 7. P. 1‒19.
- Richter M., Nebel O., Maas R., Mather B., Nebel-Jacobsen Y., Capitanio F.A., Dick H.J.B., Cawood P.A. An Early Cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean // Sci. Advances. 2020. Vol. 6. Is. 44. P. 1‒29.
- Snow J.E., Edmonds H.N. Ultraslow-spreading ridges. Rapid paradigm changes // Oceanography. 2007. Vol. 20. No. 1. P. 90–101.
- Sohn R.A., Willis C., Humphris S. et al. Explosive volcanism on the ultraslow-spreading Gakkel Ridge, Arctic Ocean // Nature. 2008. Vol. 453. P. 1236–1238.
- Taylor P.T., Kovacs L.C., Vogt P.R., Johnson G.L. Detailed aeromagnetic investigation of the Arctic Basin // J. Geophys. Res. 1981. Vol. 86. P. 6323‒6333.
- Thiede J. Polarstern Arctis XVII/2 Cruise Report: Amore 2001 (Arctic Mid-Ocean Ridge Expedition) – (Bremerhaven, Alfred Wegener Institute. 2002. Vol. 421), pp. 297.
- Tremblay A., Meshi A., Bédard J.H. Oceanic core complexes and ancient oceanic lithosphere: Insights from Iapetan and Tethyan ophiolites (Canada and Albania) // Tectonophysics. 2009. Vol. 473. Is. 1. P. 36‒52.
- Xu M., Canales J.P., Tucholke B.E., DuBois D.L. Heterogeneous seismic velocity structure of the upper lithosphere at Kane oceanic core complex, Mid-Atlantic Ridge // Geochem., Geophys., Geosyst. 2009. Vol. 10. No. 10. P. 1‒34. 10.1029/2009GC002586' target='_blank'>https://doi: 10.1029/2009GC002586
- Zakharov V.A., Kim B.I., Rogov M.A. Probable Distribution of Upper Jurassic and Lower Cretaceous Deposits on the Laptev Sea Shelf and Their Petroleum Resource Potential // Stratigraphy and Geological Correlation. 2013. Vol. 21. No. 5. P. 496–514. https://doi.org/10.1134/S0869593813050067
Supplementary files
