Seismotectonic Consequences of the Strong Earthquake Mauli (February 27, 2010, Mw = 8.8) in Chile: Digital Modeling of the Crust Stress-State of the Western Margin of the South American Plate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article presents seismotectonic consequences of the strong Mauli earthquake in Chile, which occurred on the February 27, 2010, Mw = 8.8. The consequences are considered as a manifestation of a large-scale fragment of the general seismotectonic process on the western edge of the South American plate (Chilean sector). Our study shows that manifestations of postseismic processes of the Maule earthquake cover a much larger area compared to the epicentral zone of the aftershocks. Based on the comparison of the results of numerical modeling of the stress-strain state before and after the earthquake, seismological, geodetic, and satellite data, an alternative model of the development of the seismotectonic process in the Chilean sector of the South American plate was proposed. The stress-strain modeling was performed by the finite element method. The source of the Mauli earthquake, at a depth of 33 km, falls into the region of relatively high values of compression stresses and positive maximum shear stresses. It was shown, that other strong earthquakes of the Chilean sector in the interval of depths from 20 to 50 km are caused by high concentration of tectonic stresses in the region of transition from oceanic to continental lithosphere. Within the framework of the proposed model of the seismotectonic process, ruptures weaken the contact between the oceanic and continental lithosphere after strong earthquakes. Abrupt sinking of the continental lithosphere into the mantle causes an increase in viscous melt pressure, promotes penetration into mega-cracks, and rises to the surface, causing subsequent volcanic eruptions. It is shown that the results obtained in comparison with the coseismic consequences of earthquakes do not contradict these results of numerical modeling and give new insights into the structure of the lithosphere in the continent‒ocean transition zone and the development of the seismotectonic process.

About the authors

V. N. Morozov

Geophysical Center RAS

Email: a.manevich@gcras.ru
Russia, 119296, Moscow, bld. 3, Molodezhnaya st.

A. I. Manevich

Geophysical Center RAS

Author for correspondence.
Email: a.manevich@gcras.ru
Russia, 119296, Moscow, bld. 3, Molodezhnaya st.

References

  1. Ломизе М.Г. Анды как периферический ороген распадающейся Пангеи // Геотектоника. 2008. № 3. С. 51‒72.
  2. Ломизе М.Г. Арауканский вулканический пояс (Анды) // Докл. АН СССР. 1973. Т. 213. № 5. С. 1147–1150.
  3. Ломизе М.Г. Донеогеновый вулканизм и тектоника Чилийско-Аргентинских Анд // Геодинамические исследования. 1975. № 2. С. 5–75.
  4. Ломизе М.Г. Тектонические развитие и вулканизм Чилийско-Аргентинских Анд // Бюлл. МОИП. Геология. 1975. Т. 2. № 3. С. 48‒69.
  5. Милановский Е.Е. Кайнозойский орогенез Центральных Анд // Геодинамические исследования. 1975. № 2. С. 76–161.
  6. Михайлов В.О., Тимошкина Е.П., Смирнов В.Б., Хайретдинов С.А., Дмитриев П.Н. К вопросу о природе постсейсмических деформационных процессов в районе землетрясения Маули, Чили, 27.02.2010 г. // Физика Земли. 2020. № 6. С. 38–47. https://doi.org/10.31857/S0002333720060046
  7. Морозов В.Н. Глобальный тектогенез. Основные черты. – М.: ГЕОС, 1999. 169 с.
  8. Морозов В.Н., Кафтан В.И., Татаринов В.Н., Колесников И.Ю., Маневич А.И., Мельников А.Ю. Численное моделирование напряженно-деформированного состояния и результаты GPS-мониторинга эпицентральной зоны землетрясения 24 августа 2014 (г. Напа, шт. Калифорния, США) // Геотектоника. 2018. № 5. С. 90–102. https://doi.org/10.1134/S0016853X18040069
  9. Пущаровский Ю.М., Архипов И.В. Тектонические аспекты Чилийских Анд // Геотектоника. 1972. № 1. С. 88–104.
  10. Романюк Т.В. Позднекайнозойская геодинамическая эволюция центрального сегмента Андийской субдукционной зоны // Геотектоника. 2009. № 4. С. 63–83.
  11. Романюк Т.В., Ребецкий Ю.Л. Плотностные неоднородности, тектоника и напряжения Андийской субдукционной зоны на 21° ю.ш. ‒ Ст.I. ‒ Геофизическая модель и тектоника // Физика Земли. 2001. № 2. С. 23–35.
  12. Романюк Т.В., Ребецкий Ю.Л. Плотностные неоднородности, тектоника и напряжения Андийской субдукционной зоны на 21° ю.ш. ‒ Ст. II. ‒ Тектонофизическая модель // Физика Земли. 2001. № 2. С. 36–57.
  13. Barrientos S., Vera E., Alvarado P., Monfret T. Crustal seismicity in Central Chile // J. South Am. Earth Sci. 2004. Vol. 16. Is. 8. P. 759–768. https://doi.org/10.1016/j.jsames.2003.12.001
  14. Beck S., Barrientos S., Kausel E., Reyes M. Source characteristics of historical earthquakes along the Central Chile subduction zone // J. South Am. Earth Sci. 1998. Vol. 11. No. 2. P. 115–129. https://doi.org/10.1016/S0895-9811(98)00005-4
  15. Comsol Multiphysics. ‒ URL: https://www.comsol.com/ [Accessed: 25.01.2023].
  16. Conrad C. P., Lithgow-Bertelloni C. Influence of continental roots and asthenosphere on plate-mantle coupling // Geophys. Res. Lett. 2006. Vol. 33. Is. 5. L05312 https://doi.org/10.1029/2005gl025621
  17. Cowan H., Beattie G., Hill K., Evans N., McGhie C., Gibson G., Lawrance G., Hamilton J., Allan P., Bryant M., Davis M., Hyland C., Oyarzo-Vera C., Quintana-Gallo P., Smith P. The M8.8 Chile earthquake, 27 February 2010 // Bull. New Zealand Soc. Earthquake Engineer. Vol. 44. Is. 3. P. 123–166. https://doi.org/10.5459/bnzsee.44.3.123-166
  18. Delouis B., Monfret T., Dorbath L., Pardo M., Rivera L., Comte D., Haessler H., Caminade J.P., Ponce L., Kausel E., Cisternas A. The Mw = 8.0 Antofagasta (Northern Chile) Earthquake of 30 July 1995: A Precursor to the End of the Large 1877 Gap // Bull. Seism. Soc. Am. 1997. Vol. 87. No. 2. P. 427–445. https://doi.org/10.1785/BSSA0870020427
  19. Delouis B., Pardo M., Legrand D., Monfret T. The Mw 7.7 Tocopilla Earthquake of 14 November 2007 at the Southern Edge of the Northern Chile Seismic Gap: Rupture in the Deep Part of the Coupled Plate Interface // Bull. Seism. Soc. Am. 2009. Vol. 99. No. 1. P. 87–94. https://doi.org/10.1785/0120080192
  20. Duputel Z., Rivera L., Kanamori H., Hayes G. W phase source inversion for moderate to large earthquakes (1990–2010) // Geophys. J. Int. 2012. Vol. 189. Is. 2. P. 1125–1147. https://doi.org/10.1111/j.1365-246X.2012.05419.x
  21. Earthquake Hazards Program USGS. M = 8.8 ‒ 36 km WNW of Quirihue, Chile. ‒ URL: https://earthquake.usgs. gov/earthquakes/eventpage/official20100227063411530_ 30/executive [Accessed: 25.01.2023].
  22. Gavin P.H., Bergman E., Johnson K.L., Benz H.M., Brown L., Meltzer A.S. Seismotectonic framework of the 2010 February 27, Mw = 8.8 Maule, Chile earthquake sequence // Geophys. J. Int. 2013. Vol. 195. Is. 2. P. 1034–1051. https://doi.org/10.1093/gji/ggt238
  23. Grossi P., Williams C., Cabrera C., Tabucchi T., Sarabandi P., Rodriguez A., Aslani H., Rahnama M. The 2010 Maule, Chile earthquake: Lessons and future challenges. ‒ Ed.by M. Rahnama, (Risk Management Solutions, USA. 2011), 41 p.
  24. Kley J., Monaldi C.R. Tectonic shortening and crustal thickness in the Central Andes: How good is the correlation? // Geology. 1998. Vol. 26. Is. 8. P. 723–726.
  25. Moreno T., Gibbons W. The Geology of Chile. ‒ Ed. by B. Pankhurst, (Geol. Soc., London. UK. 2007), 395 p.
  26. Morozov V.N., Tatarinov V.N., Kagan A.I. Seismotectonic model of the western margin of the South American Plate. ‒ In: Heat-Mass Transfer and Geodynamics of the Lithosphere. ‒ Springer. Innovation and Discovery in Russian Science and Engineering, (Springer. 2021), P. 469–479. https://doi.org/10.1007/978-3-030-63571-8_28
  27. Pararas-Carayannis G. The earthquake and tsunami of 27 February 2010 in Chile ‒ evaluation of source mechanism and of near and far-field tsunami effects // Sci. Tsunami Hazards. 2010. Vol. 29. No. 2. P. 96–126.
  28. Pardo M., Comte D., Monfret T. Seismotectonic and stress distribution in the Central Chile subduction zone // J. South Am. Earth Sci. 2002. Vol. 15. Is. 1. P. 11–22. https://doi.org/10.1016/S0895-9811(02)00003-2
  29. Pritchard M., Jay J., Aron F., Henderson S.T., Lara L.E. Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake // Nature Geoscience. 2013. Vol. 6. P. 632–636. https://doi.org/10.1038/ngeo1855
  30. Qu W., Han Y., Lu Z., An D., Zhang Q., Gao Y. Co-seismic and post-seismic temporal and spatial gravity changes of the 2010 Mw 8.8 Maule Chile earthquake observed by GRACE and GRACE Follow-on // Remote Sensors. 2020. Vol. 12(17). P. 2768. https://doi.org/10.3390/rs12172768
  31. Rietbrock A., RyderI., Hayes G., Haberland C., Comte D., Roecker S., Lyon-Caen H. Aftershock seismicity of the 2010 Maule Mw = 8.8, Chile, earthquake: Correlation between co-seismic slip models and aftershock distribution? // Geophys. Res. Lett. 2012. Vol. 39. Is. 8. P. L08310. https://doi.org/10.1029/2012GL051308
  32. Ruiz J.A., Hayes. P.H., Carrizo D., Kanamori H. Seismological analyses of the 2010 March 11, Pichilemu, Chile, Mw = 7.0 and Mw = 6.9 coastal intraplate earthquakes // Geophys. J. Int. 2014. Vol. 197. Is. 1. P. 414–434. https://doi.org/10.1093/gji/ggt513
  33. Ryder I., Rietbrock A., Kelson K., Bürgmann R., Floyd M., Socquet A., Vigny C., Carrizo D. Large extensional aftershocks in the continental forearc triggered by the 2010 Maule earthquake, Chile // Geophys. J. Int. 2012. Vol. 188. Is. 3. P. 879–890. https://doi.org/10.1111/j.1365-246X.2011.05321.x
  34. Takada Y., Fukushima Y. Volcanic Subsidence Triggered by Megathrust Earthquakes // J. Disaster Res. 2014. Vol. 9. Is. 3. P. 373–380. https://doi.org/10.20965/jdr.2014.p0373
  35. Takada Y., Fukushima Y. Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan // Nature Geoscience. 2013. Vol. 6. P. 637–641. https://doi.org/10.1038/ngeo1857
  36. Vigny C., Socquet A., Peyrat S., Ruegg J.-S., Métois M., Madariaga R., Morvan S., Lancieri M., Lacassin R., Campos J., Carrizo D., Bejar-Pizarro M., Barrientos S., Armijo R., Aranda C., Valderas-Bermejo M.-C., Ortega I., Bondoux F., Baize S., Lyon-Caen H., Pavez A., Vilotte J.P., Bevis M., Brooks B., Smalley R., Parra H., Baez J.-C., Blanco M., Cimbaro S., Kendrick E. The 2010 Mw 8.8 Maule Megathrust Earthquake of Central Chile, Monitored by GPS // Science. 2011. Vol. 332. No. 6036. P. 1417–1421. https://doi.org/10.1126/science.1204132
  37. Yamazaki Y., Cheung K.F. Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake // Geophys. Res. Lett. 2011. Vol. 38. Is. 12. L12605. https://doi.org/10.1029/2011GL047508

Supplementary files


Copyright (c) 2023 В.Н. Морозов, А.И. Маневич

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies