Fine Structures of Type-IV Solar Radio Bursts Associated with Stationary and Moving Sources

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Various types of fine structure in the continuum emission of type-IV radio bursts are considered as
applied to different types of radiation sources, both stationary and moving. In the case of stationary sources,
the origin of the fine structure is associated both with processes in individual magnetic loops (quasi-periodic
acceleration and magnetohydrodynamic waves), and with large-scale processes associated with the propagation
of magnetohydrodynamic disturbances, the formation of loop arcades, and processes of discrete acceleration
of particles synchronous with them, causing the pulsating nature of radio emissions. For the case of a
moving source, the generation mechanism largely depends on the magnetic structure of the source (an
expanding magnetic arc or an isolated plasma cloud). In this case, the connection with coronal mass ejections
and shock waves is also important. Secondary pulsations are explained by a magnetohydrodynamic fluctuation
source in the form of a magnetic loop or cloud. The absence of other fine structures in the continuum of
moving type-IV bursts may be due to the critical angle of the loss cone for the excitation of whistlers

About the authors

V. V. Fomichev

Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences

Email: gchernov@izmiran.ru
Moscow, Troitsk, 108840 Russia

G. P. Chernov

Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences

Author for correspondence.
Email: fomichev@izmiran.ru
Moscow, Troitsk, 108840 Russia

References

  1. ‒ Железняков В.В., Злотник Е.Я., Зайцев В.В., Шапошников В.Е. Эффект двойного плазменного резонанса и его роль в радиоастрономии // УФН. Т. 186. С. 1090‒ 1116. 2016. https://doi.org/10.3367/UFNe.2016.05.037813
  2. ‒ Зайцев В.В., Степанов А.В. О природе пульсаций солнечного радиоизлучения IV типа // Исслед. по геомагнетизму, аэрономии и физике Солнца. Вып. 37. С. 11‒ 18. 1975.
  3. ‒ Aschwanden M.J., Alexander D. Flare plasma cooling from 3 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille Day Event (14 July 2000) // Sol. Phys. V. 204. P. 91‒120. 2001.
  4. ‒ Boischot A. Caracteres d’un type d’emission hertzienne associe a certaines Eruptions chromospheriques // Comptes Rendus, Acad. Sci. Paris. V. 244. P. 1326‒1329. 1957.
  5. ‒ Caroubalos C., Alissandrakis C.E., Hillaris A. et al. ARTEMIS IV radio observations of the 14 July 2000 large solar event // Sol. Phys. V. 204. P. 167‒179. 2001.
  6. ‒ Chernov G.P. Fine structure of solar radio bursts. Heidelberg: Springer, 282 p. 2011.
  7. ‒ Chernov G.P., Kaiser M.L., Bougeret J.-L., Fomichev V.V., Gorgutsa R.V. Fine structure of solar radio bursts observed at decametric and hectometric waves // Sol. Phys. V. 242. P. 145‒169. 2007a. https://doi.org/10.1007/s11207-007-0258-y
  8. ‒ Chernov G.P., Stanislavsky A.A., Konovalenko A.A. et al. Fine structure of decametric type II radio bursts // Astronomy Letters. V. 33. P.192‒202. 2007b. https://doi.org/10.1134/S1063773707030061
  9. ‒ Chernov G.P. Unusual stripes in emission and absorption in solar radio bursts: Ropes of fibers in the meter wave band // Astron. Lett. V. 34. P. 486–499. 2008. https://doi.org/10.1134/S1063773708070074
  10. ‒ Chertok I.M., Fomichev V.V., Gnezdilov A.A. et al .Multi-scale temporal features of the 14 July 2000 meterwavelength dynamic radio spectrum compared with TRACE data // Sol. Phys. V. 204. C. 141‒254. 2001.
  11. ‒ Elgarøy Ø. Observations of the fine structure of Enhanced solar radio radiation with a narrow-band spectrum analyser // Nature. V. 184. P. 887‒888. 1959. https://doi.org/10.1038/184887a0
  12. ‒ Iskov V.N., Chertok I.M., Chernov G.P., Fomichev V.V. et al. Analysis of the flare of May 16, 1981 with a complex space-time structure using optical, X-ray and radio observations // Bull. Astr. Inst. Czechoslovakia. V. 36. P. 81‒97. 1985.
  13. ‒ Gary D.E., Dulk G.A., House L.L. et al. The Type IV burst of 1980 June 29, 0233 UT: Harmonic plasma emission? // Astron. Astrophys. V. 52. P. 42‒50. 1985.
  14. ‒ Gopalswami N. History and development of coronalmass ejections as a key player in solar terrestrial relationship // Geosci. Lett. V. 3. № 8. P. 1‒18. 2016. https://doi.org/10.1186/s40562-016-0039-2
  15. ‒ Mann G., Baumgartel K., Chernov G.P., Karlicky M. Interpretation of a special fine structure in type IV solar radio bursts // Sol. Phys. V. 120. P. 383‒391. 1989.
  16. ‒ Masuda S., Kosugi T., Hudson H.S. // Sol. Phys. V. 204. P. 55‒67. 2001. https://doi.org/10.1023/A:1014230629731
  17. ‒ Morosan D.E., Kilpua E.K.J., Carley E.P., Monstein C. Variable emission mechanism of a Type IV radio burst // Astron. Astrophys. V. 623. № A63. P. 1‒12. 2019. https://doi.org/10.1051/0004-6361/201834510
  18. ‒ Morosam P.E., Kumari A., Kilpua E.K.J., Hamini A. Mo-ving solar radio bursts and their association with coronal mass ejections // Astron. Astrophys. V. 647. № L12. P. 1‒5. 2021. https://doi.org/10.1051/0004-6361/202140392
  19. ‒ Pick M., Forbes T.G., Mann G. et al. Multi-wavelength observations of CMEs and associated phenomena / Report of Working Group F. // Space Sci. Rev. V. 123. P. 341‒382. 2006. https://doi.org/10.1007/s11214-006-9021-1
  20. ‒ Pick M., Vilmer N. Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun–Earth connection // Astron. Astrophys. Rev. V. 16. P. 1–153. 2008. https://doi.org/10.1007/s00159-008-0013-x
  21. ‒ Ramesh R., Kishore P., Mulay Sargam M. et al. Low-frequency observations of drifting, non-thermal continuum radio emission associated with the solar coronal mass ejections // The Astrophys. J. V. 778:30. P. 1–8. 2013. https://doi.org/10.1088/0004-637X/778/1/30
  22. ‒ Reiner M.J., Kaiser M.L., Karlicky M. et al. Bastille day event: a radio perspective // Sol. Phys. V. 204. P. 123‒139. 2001.
  23. ‒ Riddle A.C. 80 MHz observations of a moving type IV solar burst, March 1, 1969 // Sol. Phys. V. 13. P. 448‒457. 1970.
  24. ‒ Robinson R.D. The relation between flare-related metric continuum bursts and coronal mass ejections // Sol. Phys. V. 104. P. 33‒39. 1986.
  25. ‒ Rosenberg H. Evidence for mhd pulsations in the solar corona // Astron. Astrophys. V. 9. P. 159‒162. 1970.
  26. ‒ Trottet G., Kerdraon A., Benz A.O., Treumann R.A. Quasi-periodic short-term modulations during a moving type IV burst // Astron. Astrophys. V. 93. P. 129‒135. 1981.
  27. ‒ Vršnak B., Warmuth A., Temmer M. et al. Multi-wavelength study of coronal waves associated with the CME-flare event of 3 November 2003 // Astron. Astrophys. V. 448. P. 739‒752. 2006. https://doi.org/10.1051/0004-6361:20053740
  28. ‒ Wang S.J., Yan Y.H., Zhao R.Z., Fu Q.J. et al. Broadband radio bursts and the structures during the great solar event on 14 July 2000 // Sol. Phys. V. 204. P. 155‒166. 2001.
  29. ‒ Wild J.P. The radioherliograph and the radio astronomy programme of the Culgoora Observatory // Proc. Astron. Soc. Australia. V. 1. P. 28‒30. 1967.
  30. ‒ Zaitsev V.V., Stepanov A.B., Chernov G.P. Pulsations of the type IV radio bursts as an indicator of protonability of solar flare // Sol. Phys. V. 93. P. 363‒377. 1984.
  31. ‒ Zheleznyakov V.V., Zlotnik E.Ya. Cyclotron wave instability in the corona and origin of solar radio emission with fine structure. III. Origin of zebra pattern // Sol. Phys. V. 44. P. 461‒470. 1975.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (132KB)
3.

Download (504KB)
4.

Download (1020KB)
5.

Download (963KB)
6.

Download (862KB)
7.

Download (2MB)

Copyright (c) 2023 В.В. Фомичев, Г.П. Чернов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».