


Vol 58, No 3 (2018)
- Year: 2018
- Articles: 15
- URL: https://journals.rcsi.science/0016-7932/issue/view/9517
Article
Influence of Solar Wind Plasma Parameters on the Intensity of Isolated Magnetospheric Substorms
Abstract
Parameters of the interplanetary magnetic field and solar wind plasma during periods of 163 isolated substorms have been studied. It is shown that the solar wind velocity V and plasma density N remain approximately constant for at least 3 h before substorm onset Тo and 1 h after Тo. On average, the velocity of the solar wind exhibits a stable trend toward anticorrelation with its density over the whole data array. However, the situation is different if the values of V and N are considered with respect to the intensity of substorms observed during that period. With the growth of substorm intensity, quantified as the maximum absolute value of AL index, an increase in both the solar wind plasma velocity and density, at which these substorms appear, is obsreved. It has been found that the magnitude of the solar wind dynamic pressure P is closely related to the magnetosphere energy load defined as averaged values of the Kan–Lee electric field EKL and Newell parameter dΦ/dt averaged for 1 h interval before Тo. The growth of the dynamic pressure is accompanied by an increase in the load energy necessary for substorm generation. This interrelation between P and values of EKL and dΦ/dt is absent in other, arbitrarily chosen periods. It is believed that the processes accompanying increasing dynamic pressure of the solar wind result in the formation of magnetosphere conditions that increasingly impede substorm generation. Thus, the larger is P, the more solar wind energy must enter the Earth’s magnetosphere during the period of the growth phase for substorm generation. This energy is later released during the period of the substorm expansion phase and creates even more intense magnetic bays.



Periodic Restructuring of Auroral Arcs as an Indicator of Alfvén Resonance in the Region of Substorm Onset
Abstract
Using optical data from observatories of the Polar Geophysical Institutes, as well all-sky TV observations at Canadian stations of ground support for the THEMIS satellite mission, we clarify whether Alfvén resonance should necessarily be present in the region of subsequent substorm onset. If this is true, the diversion of magnetospheric cross-tail current to the ionosphere, which leads to substorm onset, may be due to resonant Alfvén (or flapping) oscillations that increase in duration. This possibility is believed to indicate optically the presence of Alfvén resonance via periodic restructuring of the preonset auroral arc 3–15 min before onset at T0. At the latitudes of the observatories included in this study, auroral restructuring occurs as repetitive poleward excursions of the preonset arc (the periods of excursions are 1–3 min) and can be readily explained by the theory of Alfvén resonance. It is shown that this feature, while typically observed in strong substorm events, may be lacking for weaker substorms. As proved by conjugate satellite observations, the lack of auroral restructuring in the latter case may result from the weakness of the involved Alfvén resonance, which is still present but not accompanied by large field-aligned currents sufficient for visualization in the ionosphere of the apparent propagation of oscillation phase across the resonance layer.



Simulation of Physical Phenomena in the Ionosphere and Magnetosphere of the Earth on Krot Plasma Device. Some Results and Prospects
Abstract
Krot device is a unique installation of the scientific infrastructure of the Russian Federation. It is a source of highly uniform low-temperature plasma that takes up to several tens of cubic meters. The setup makes it possible to perform both scaling laboratory simulations of ionospheric and magnetospheric phenomena in the approximation of unbound plasma, as well as plasma tests of full-size samples of the onboard equipment of spacecraft (SC). The simulation results of the dynamics and interaction of small-scale thermal plasma irregularities occurring during ionospheric heating experiments are presented. The impedance of the small-size models of RESONANCE and STRANNIK SC electric antennas in plasma is measured. The possible use of free-space calibration of antennas in the magnetospheric portions of the orbit in the ELF and VLF ranges is confirmed. The efficiency of a new plasma parameters resonance sensor for the TRABANT SC in the ionospheric range of electron densities is shown.



Variations in the Polar Mesospheric Summer Echoes during the Appearance of Irregularities of Noctilucent Clouds
Abstract
Variations in the amplitude of the ordinary wave from a received signal on a partial reflection radar at a short-wave range on the Kola Peninsula during the appearance of noctilucent clouds on August 12, 2016, are examined. Noctilucent clouds are registered by the all-sky camera located 100 km southward of the partial reflection radar. They extended over the entire celestial hemisphere observed by the all-sky camera; all of them moved in the southern direction, and the clouds had a tenuous structure and showed gravity waves with spatial periods of 15–100 km. During the presence of noctilucent clouds over the partial reflection radar, polar mesospheric summer echoes (PMSEs) were recorded at heights of 83–86 km. It was found that the presence of only noctilucent clouds in diagram of the antenna pattern of partial frequency radar is not sufficient for the appearance of PMSEs; noctilucent clouds must also have irregularities of several kilometers. The PMSE heights decreased with a velocity of 0.5 and 1.3 m/s. The issue of aerosols that cause the appearance of PMSEs and noctilucent clouds is discussed.



Regular Variations of Intensity of the Westward Auroral Electrojet according to the Geomagnetic AL Index
Abstract
Diurnal and seasonal variations of the geomagnetic AL index are studied. It is found in disturbed days that the mode of AL diurnal variation depends on the angle between the Sun–Earth line prolongation in the direction towards the magnetotail and the plane of geomagnetic equator; on quiet days, AL depends on the angle of attack between the geomagnetic axis and the Earth–Sun line. Seasonal AL variations are characterized by annual variations with summer maximum and semiannual variations with equinoctial maxima. It is shown that the semiannual AL variations can be described by a simplified model of plasma convection in the magnetotail based on a plasma electron cooling mechanism.



Long-Term Trends in the Critical Frequency of the E-layer
Abstract
A search for trends k(foE) in the critical frequency of the ionospheric E layer at Juliusruh and Slough stations is performed by the method often used by the authors to analyze trends in the F2-layer parameters. It is found that k(foE) could differ in both magnitude and even sign within different time intervals. However, the k(foE) trends have been stably negative over the last two decades for both stations and all months of the year. The k(foE) values averaged over a year are −0.012 and −0.005 MHz per year for Juliusruh and Slough stations, respectively. The method used in the recent paper by Laštovička et al. (2016) to determine foE trends is analyzed, and it is shown that the difference in linear approximation of the dependence of the observed foE values on F10.7 within different time intervals could be interpreted not as the presence of a different foE dependence on the F10.7 index within these intervals but as the presence within them of foE trends that change the slope of the linear approximation.



Empirical Model of the Location of the Main Ionospheric Trough
Abstract
The empirical model of the location of the main ionospheric trough (MIT) is developed based on an analysis of data from CHAMP satellite measured at the altitudes of ~350–450 km during 2000–2007; the model is presented in the form of the analytical dependence of the invariant latitude of the trough minimum Φm on the magnetic local time (MLT), the geomagnetic activity, and the geographical longitude for the Northern and Southern Hemispheres. The time-weighted average index Kp(τ), the coefficient of which τ = 0.6 is determined by the requirement of the model minimum deviation from experimental data, is used as an indicator of geomagnetic activity. The model has no limitations, either in local time or geomagnetic activity. However, the initial set of MIT minima mainly contains data dealing with an interval of 16–08 MLT for Kp(τ) < 6; therefore, the model is rather qualitative outside this interval. It is also established that (a) the use of solar local time (SLT) instead of MLT increases the model error no more than by 5–10%; (b) the amplitude of the longitudinal effect at the latitude of MIT minimum in geomagnetic (invariant) coordinates is ten times lower than that in geographical coordinates.



Global Survey Method for the World Network of Neutron Monitors
Abstract
One of the variants of the global survey method developed and used for many years at the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences is described. Data from the world network of neutron monitors for every hour from July 1957 to the present has been processed by this method. A consistent continuous series of hourly characteristics of variation of the density and vector anisotropy of cosmic rays with a rigidity of 10 GV is obtained. A database of Forbush decreases in galactic cosmic rays caused by large-scale disturbances of the interplanetary medium for more than half a century has been created based on this series. The capabilities of the database make it possible to perform a correlation analysis of various parameters of the space environment (characteristics of the Sun, solar wind, and interplanetary magnetic field) with the parameters of cosmic rays and to study their interrelationships in the solar–terrestrial space. The features of reception coefficients for different stations are considered, which allows the transition from variations according to ground measurements to variations of primary cosmic rays. The advantages and disadvantages of this variant of the global survey method and the opportunities for its development and improvement are assessed. The developed method makes it possible to minimize the problems of the network of neutron monitors and to make significant use of its advantages.



Description of the Main Ionospheric Trough by the SM-MIT Model. European Longitudinal Sector
Abstract
Due to the selection of exsisting ionospheric models for incorporation into the created System of Ionospheric Monotoring and Prediction of the Russian Federation, the model of the main ionospheric trough (SM-MIT) is tested with the data from ground-based ionospheric observations in the European longitudinal sector. It is shown that the SM-MIT model does not give an increase in accuracy in comparison to the foF2 monthly median upon a description of the equatorial wall of the MIT. The model describes the foF2 values in the MIT minimum with higher accuracy than the foF2 monthly median or the median IRI model; however, at the same time, the deviations of the model foF2 values from the observed values are high enough: 20–30%. In the MIT minimum, the decrease in the model foF2 values relative to the median values is on average only ~10%, which is substantially less than the observed depth of MIT in the evening sector. The verification results have shown that the available SM-MIT model must be completed for practical use.



Formation Mechanisms of the Spring–Autumn Asymmetry of the Midlatitudinal NmF2 under Daytime Quiet Geomagnetic Conditions at Low Solar Activity
Abstract
Formation mechanism of the spring–autumn asymmetry of the F2-layer peak electron number density of the midlatitudinal ionosphere, NmF2, under daytime quiet geomagnetic conditions at low solar activity are studied. We used the ionospheric parameters measured by the ionosonde and incoherent scatter radar at Millstone Hill on March 3, 2007, March 29, 2007, September 12, 2007, and September 18, 1984. The altitudinal profiles of the electron density and temperature were calculated for the studied conditions using a one-dimensional, nonstationary, ionosphere–plasmasphere theoretical model for middle geomagnetic latitudes. The study has shown that there are two main factors contributing to the formation of the observed spring–autumn asymmetry of NmF2: first, the spring–autumn variations of the plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity, and, second, the difference between the composition of the neutral atmosphere under the spring and autumn conditions at the same values of the universal time and the ionospheric F2-layer peak altitude. The seasonal variations of the rate of O+(4S) ion production, which are associated with chemical reactions with the participation of the electronically excited ions of atomic oxygen, does not significantly affect the studied NmF2 asymmetry. The difference in the degree of influence of O+(4S) ion reactions with vibrationally excited N2 and O2 on NmF2 under spring and autumn conditions does not significantly change the spring–autumn asymmetry of NmF2.



A Model of Zebra Patterns in Solar Radio Emission
Abstract
We analyze complex zebra patterns and fiber bursts during type-IV solar radio bursts on August 1, 2010. It was shown that all of the main details of sporadic zebra patterns can be explained within the model of zebra patterns and fiber bursts during the interaction of plasma waves with whistlers. In addition, it was shown that the major variations in the stripes of the zebra patterns are caused by the scattering mechanism of fast particles on whistlers, which leads to the transition of whistler instability from the normal Doppler effect to an anomalous one.



Diurnal and Longitudinal Variations of the Structure of an Equatorial Anomaly During Equinoxes According to Intercosmos-19 Satellite Data
Abstract
Longitudinal and local time variations in the structure of the equatorial anomaly under high solar activity in the equinox are considered according to the Intercosmos-19 topside sounding data. It is shown that the anomaly begins to form at 0800 LT, when the southern crest is formed. The development of the equatorial anomaly is associated with well-known variations in the equatorial ionosphere: a change in the direction of the electric field from the west to the east, which causes vertical plasma drift W (directed upward) and the fountain effect. At 1000 LT, both anomaly crests appear, but they become completely symmetrical only by 1400 LT. The average position of the crests increases from I = 20° at 1000 LT to I = 28° at 1400 LT. The position of the crests is quite strong, sometimes up to 15°, varies with longitude. The foF2 value above the equator and the equatorial anomaly intensity (EAI) at 1200–1400 LT vary with the longitude according to changes in the vertical plasma drift velocity W. At this time, four harmonics are observed in the longitudinal variations of W, foF2, and EAI. The equatorial anomaly intensity increases to the maximum 1.5–2 h after the evening burst in the vertical plasma drift velocity. Longitudinal variations of foF2 for 2000–2200 LT are also associated with corresponding variations in the vertical plasma drift velocity. The equatorial anomaly intensity decreases after the maximum at 2000 LT and the crests decrease in size and shift towards the equator, but the anomaly is well developed at midnight. On the contrary, after midnight, foF2 maxima in the region of the anomaly crests are farther from the equator, but this is obviously associated with the action of the neutral wind. At 0200 LT, in contrast to the morning hours, only the northern crest of the anomaly is clearly pronounced. Thus, in the case of high solar activity during the equinoxes, a well-defined equatorial anomaly is observed from 1000 to 2400 LT. It reaches the maximum at 2000 LT.



Planetary Wave Periods in foF2 Time Variations Based on Winter Data from Kaliningrad Station in 2008−2010
Abstract
The study presents the results of the analysis of the F2-layer critical frequency variations obtained for the winter periods of 2008–2010, during which sudden stratospheric warmings were observed. The data were obtained at Kaliningrad ionospheric station (54.6° N, 20° E) with the Parus digital ionosonde in standard sounding mode. The mean daily foF2 values were used in the analysis. The results of spectral analysis based on continuous wavelet transform showed that, during all of the warmings that occurred in 2008–2010, the foF2 time variations demonstrated the presence of wave processes with periods of approximately 5−6 days, as well as more extended processes with periods of ~10−13 and 23−30 days. These periods coincide with the characteristic periods of planetary waves observed in the mesosphere during sudden stratospheric warmings, while the 13- and 30-day periods can be conditioned by the influence of the Sun.



Ionosphere as an Indicator of Processes in the Geospace, Troposphere, and Lithosphere
Abstract
The possible causes of the strong ionospheric day-to-day variability under the influence of processes in the geospace, troposphere, and lithosphere are considered based on the data of the critical frequency of the F2 layer of the ionosphere at two observation stations. It is shown that even in the absence of powerful events, the ionosphere is influenced both “from above” and “from below”; in this case, the ionosphere can respond to an external action as an open nonlinear dissipative system.



Geomagnetic Field Intensity during the Neolith in the Central East European Plain
Abstract
The conducted archeomagnetic studies resulted in data on variations in the geomagnetic field intensity in the central East European Plain (Sakhtysh I site area, ϕ = 56°48′ N, λ = 40°33′ E) during the time interval of 5–3 ka BC. The geomagnetic field intensity varied mainly within the range of 30–60 μT. In the first half of the 5th millennium BC, the mean level of geomagnetic field intensity was about 35 μT. In the second half of the 5th–early 4th millennium BC, it rose to about 50 μT and then decreased again to reach a mean value of about 40 μT in the period of 4–3 ka BC. Comparison of the geomagnetic field intensity variation based on the obtained data and the data on the Caucasus region for the same time interval demonstrates a certain similarity.


