


Vol 57, No 5 (2017)
- Year: 2017
- Articles: 19
- URL: https://journals.rcsi.science/0016-7932/issue/view/9480
Article
Transionospheric radiosounding (Review)
Abstract
The transionospheric radiosounding (TIS) method has naturally brought together the two most precise methods for scanning and monitoring the ionosphere (ionospheric radiosounding by airborne and ground ionosondes) into a single system. The subsequent development of TIS equipment has led to a qualitative change in the structure and operation of the ionospheric observatory, which greatly broadened the diagnostic capabilities of the ionospheric monitoring and expanded the ionospheric region monitored by the ground station. In fact, it can be said that a closed radiosounding system has been developed. It uses three branches of ionospheric multifrequency ray (or radio wave) fans to monitor the inner and outer ionosphere and to control both of these regions via transillumination of the ionosphere at the boundary of its radio transparency. The advantage of such a system is the full use of the entire range of radiated radio waves, each part of which is responsible for certain components of the diagnostic circuit. The paper presents the results of scientific studies obtained based on TIS data, which have led to the appearance of new and, to some extent, unexpected and previously unknown phenomena and effects. Special attention is paid to the modern stage of development of the TIS concept, which has good prospects for continuous monitoring of the polar ionosphere. It is questioned whether it is expedient to replace the term sounding with the term transillumination. It is noted that TIS was and remains the most precise method of ionosphere diagnostics.



Does magnetic storm generation depend on the solar wind type?
Abstract
The purpose of this work is to draw the reader’s attention to the problem of possible differences in the generation of magnetic storms by different large-scale solar wind types: corotating interaction regions (CIRs), Sheaths, and interplanetary coronal mass ejections (ICMEs), including magnetic clouds (MCs) and Ejecta. We recently showed that the description of relationships between interplanetary conditions and Dst and Dst* indices with the modified formula by Burton et al. gives an ~50% higher efficiency of storm generation by Sheath and CIR than that by ICME. Many function couplings (FCs) between different interplanetary parameters and the magnetosphere state have been suggested in the literature; however, they have not been analyzed for different solar wind types. In this work, we study the generation efficiency of the main phase of a storm by different solar wind streams with the use of 12 FCs on the basis of OMNI data for 1976–2000. The results show that the Sheath has the highest efficiency for most FCs, and MC is the least efficient, and this result corresponds to our previous results. The reliability of the results and possible causes of differences for different FCs and solar wind types are to be studied further.



An analysis of heat transfer in the solar photosphere and chromosphere
Abstract
The prevailing heat transfer processes—convection in the photosphere and wave propagation in the chromosphere—are principally different. Despite this fact, there is a direct link between these processes: it is precisely convective photospheric flows that excite intense Alfven waves in the chromosphere. A physical model explaining the effect of strong chromospheric and coronal heating is improved in this work. The model is based on synchronous propagation and interaction in the chromosphere of photospheric spicules and Alfven waves. The results of observations of the last decade and the analytical solution of the equations of magnetohydrodynamics are used. It is established that the heating of the solar atmospheric plasma proceeds not in the corona but in the upper chromosphere.



Paleoclimate of the Earth and solar activity
Abstract
The paper focuses on climate variations caused by the orbital effect and solar activity over the last one million years and oscillations (warming or cooling) of the climate since the last ice age retreat. Attention is paid to a significant discrepancy in the trend of global temperature change during the modern interglacial epoch (Holocene) obtained by various methods. A long-term cooling trend was observed in the summer temperature of the Northern Hemisphere during the last 2000 years.



Dynamics of the ring current–magnetotail currents relationships during geomagnetic storms of different intensity
Abstract
The results of studying the intensity of fluxes of 30–80 keV ions from the data of measurements of the NOAA (POES) sun-synchronous satellites during geomagnetic storms of different intensity are presented. For 15 geomagnetic storms with |Dst|max from ~37 to ~422 nT, the storm-time maximum ion fluxes in the near-equatorial region (trapped particles) and at high latitudes (precipitating particles) have been considered. It is shown that the maximum fluxes of trapped particles, which are considered a ring-current proxy, increase with the storm power. In this case, if a smooth growth of fluxes is recorded for storms with |Dst|max < 250 nT in the near-equatorial region, a significantly steeper growth of fluxes of trapped particles is observed when storm power increases during storms with |Dst|max > 250 nT. This may be evidence of both an increasing of the contribution of the ring current relative to magnetotail currents to the development of high-intensity storms and to a nonlinear link between the ring current and ion fluxes at low altitudes in the near-equatorial region. Despite large variations in fluxes of precipitating particles in the polar region above the boundary of isotropization, a decreasing tendency, as a whole, in fluxes of these particles is observed with increasing the storm intensity. This is the evidence of the effect of saturation of magnetotail currents and of an increase in the relative role of the ring current during strong magnetic storms.



Evolution of extratropical cyclones during disturbed geomagnetic conditions
Abstract
An analysis of temperature changes in warm and cold air masses of extratropical cyclones in both hemispheres with their movement during geomagnetic disturbances at the minimum of solar activity was performed. The location and movement of air masses of cyclones was determined by thermobaric maps at the 500 hPa level. In the conditions of a classical cyclogenesis, a warm air mass cools from day to day, while the cold air mass warms up. During geomagnetic disturbances, favorable conditions for increasing intensity and cyclone lifetime are formed, i.e., in a warm air mass, the temperature increases at heights lower than 300 hPa, while a cold air mass warms up more slowly. The distributions of the temperature of air masses of extratropical cyclones were shown to change due to the changes in geomagnetic activity.



Vector anisotropy of cosmic rays in the beginning of Forbush effects
Abstract
We consider the behavior of anisotropy and density of galactic cosmic rays in the first hours of Forbush effects from 1957 to 2014 initiated by the arrival of a shock wave. It has been shown that, as early as the event commencement, the first harmonic of anisotropy tends to increase substantially and its direction changes significantly. The more is powerful the interplanetary disturbance, the greater are the changes. Based on changes in some parameters of anisotropy and density, we can estimate the heliolongitude of the disturbance source, as well as the further development of the Forbush effect and geomagnetic activity.



Modulation of galactic cosmic rays in solar cycles 22–24: Analysis and physical interpretation
Abstract
This work represents a physical interpretation of cosmic ray modulation in the 22nd–24th solar cycles, including an interpretation of an unusual behavior of their intensity in the last minimum of the solar activity (2008–2010). In terms of the Parker modulation model, which deals with regularly measured heliospheric characteristics, it is shown that the determining factor of the increased intensity of the galactic cosmic rays in the minimum of the 24th solar cycle is an anomalous reduction of the heliospheric magnetic field strength during this time interval under the additional influence of the solar wind velocity and the tilt angle of the heliospheric current sheet. We have used in the calculations the dependence of the diffusion tensor on the rigidity in the form Kij ∝ R2−μ with μ = 1.2 in the sector zones of the heliospheric magnetic field and with μ = 0.8 outside the sector zones, which leads to an additional amplification of the diffusion mechanism of cosmic ray modulation. The proposed approach allows us to describe quite satisfactorily the integral intensity of protons with an energy above 0.1 GeV and the energy spectra in the minima of the 22nd–24th solar cycles at the same value of the free parameter. The determining factor of the anomalously high level of the galactic cosmic ray intensity in the minimum of the 24th solar cycle is the significant reduction of the heliospheric magnetic field strength during this time interval. The forecast of the intensity level in the minimum of the 25th solar cycle is provided.



Applying the new method of time-frequency transforms to the analysis of the characteristics of geomagnetic Рс5 pulsations
Abstract
This study considers the possibility of using the new methods of time-frequency transforms, such as chirplet and warblet transforms, to analyze the digital observational data of geomagnetic pulsations of Pc5 type. For this purpose, necessary algorithms of calculation and appropriate software were developed. The chirplet transform method (CT) is used to analyze signals with a linear frequency modulation. A chirplet variation, the so-called warblet transform, is used to analyze signals with a nonlinear frequency modulation. Since, in studying geomagnetic pulsations, it is difficult to make assumptions on the character of the behavior of the instantaneous frequency of the signal, the special generalized warblet transform (GWT) was used for the analysis. The GWT has a high spatiotemporal resolution and was developed to analyze oscillations both with a periodic and nonperiodic change of the instantaneous frequency. The software developed for GWT calculation was used to study daytime geomagnetic Pc5 pulsations with durations of several hours that were detected via the network of ground-based magnetometers of the Scandinavian IMAGE profile during the magnetic storm of May 29–30, 2003. For the first time, temporal variations of the instantaneous frequency of geomagnetic pulsations are determined and their possible use in studying the fine spatial structure of Pc5 waves is shown.



Isolated bursts of irregular geomagnetic pulsations in the region of the dayside cusp
Abstract
In this work, the results of comparative analysis of morphological regularities of right-polarized (R type) and left-polarized (L type) isolated bursts of ipcl pulsations (irregular pulsations continuous long period) with an anomalously large amplitude in the region of the daytime polar cusp, as well as conditions of their excitation, are presented. It has been found that R and L bursts are similar in the maximum amplitude level, wave packet duration, spectral composition, magnitude of ellipticity, diurnal variation shape, and other characteristics. At the same time, bursts of the R and L type are excited at different degrees of plasma turbulence in the generation region, at different IMF orientations in the plane of ecliptic, as well as in the plane perpendicular to it, and at different dynamics of the parameter β (characterizing the ratio of the thermal pressure to the magnetic pressure) and Alfvén Mach number Ma. It is supposed that the generation of isolated bursts of the R and L types can be related to the amplification of the plasma turbulence level due to the development of wind instability at the front boundary of the magnetosphere, and features of their polarization can be interpreted in the scope of the model of nonlinear propagation of Alfvén waves.



Long-term changes in the Delta foF2 parameter based on the data of two European ionospheric stations
Abstract
Analysis of changes in the critical frequency foF2 in recent decades has been performed by determination of “Delta foF2” parameter. These values determine the mean change of foF2 values from the “etalon period” (1958–1980) to later periods. The results are compared with the determination of foF2 trends, which was performed in a series of previous publications of the authors. The data of two most reliable ionospheric stations of the European region, Slough and Juliusruh, are analyzed. The results confirm all principal conclusions obtained earlier, which were based on analysis of the trends. A systematic decrease of foF2 with time occurs (which corresponds to a negative trend), and the character of changes in the Delta values with season and local time on the whole agrees with the character of changes in the trend. It is shown that the results based on the data of both considered stations show good agreement.



Winter anomaly of the E-layer critical frequency in the nighttime auroral zone
Abstract
Analysis of the annual variation of the E-layer critical frequency median foE in the nighttime (22−02 LT) auroral zone by the data of several stations of the Northern Hemisphere has shown the median maximum in winter and minimum in summer, even though the summer contribution of solar radiation to foE is greater. Thus, a new phenomenon was discovered—an foE median winter anomaly in the nighttime auroral zone. Its amplitude (ratio of winter to summer foE figures) can reach 10–15%; however, this anomaly was weakly expressed and statistically insignificant at particular stations located in the auroral zone. The winter anomaly is more distinct for foEavr, the median of the E-layer critical frequency foE caused by the auroral source of atmospheric ionization, i.e., excluding the solar radiation contribution to foE. For foEavr, the amplitude of the winter anomaly can reach 15–20%. Based on the qualitative analysis, it has been found that foE winter anomaly is stipulated by the winter/summer asymmetry of energy flow of accelerated electrons, which induce discrete aurorae in the nighttime auroral zone.



Formation of a plasma antenna by an explosive action in the ionosphere
Abstract
We have studied the radiative characteristics of the explosive action in the atmosphere. It has been shown that even a single explosive action produced simultaneously with a high-frequency (HF) discharge forms an effective plasma antenna. In the absence of an HF discharge, an explosive action with a specific arrangement of point explosions allows the generation of a convergent shockwave of pressure and magnetic field. As a result, a waveguiding disturbance of the background plasma is formed in the convergence region of the shockwave; given the simultaneous excitation of pulsed fields in the near-frontal region, this also leads to the formation of a plasma antenna at high altitudes.



Spatial and temporal variations in infrared emissions of the upper atmosphere. 2. 15-μm carbon dioxide emission
Abstract
The results of rocket and satellite measurements of carbon dioxide emissions at a wavelength of 15 μm in the upper atmosphere have been systematized and analyzed. Analytical expressions describing the dependence of the altitude distribution of 15-μm CO2 emission intensity and its variation in the altitude range from 100 to 130 km on the season, latitude, and solar activity have been obtained.



Nonlinear evolution of the atmosphere and ionosphere above a seismic epicenter. II. Numerical simulation
Abstract
The results of numerical simulation of the nonlinear evolution of an acoustic pulse propagating above an earthquake epicenter with preset energy parameters are presented. The interaction with charged plasma particles in the lower ionosphere is taken into account. The interaction between neutral and charged components is described by the diffusion mechanism of the disturbance of the density of charged ionospheric plasma components. The simulation was carried out for three values of earthquake magnitude M = 5; 6; and 7. It is ascertained that the numerical simulation results agree with analytical estimates made during the study of main regularities of seismic events that induce weak nonlinear effects in the atmosphere.



Effects of strong earthquakes in variations of electrical and meteorological parameters of the near-surface atmosphere in Kamchatka region
Abstract
The diurnal variations in electrical (quasistatic electric field and electrical conductivity) and meteorological (temperature, pressure, relative humidity of the atmosphere, and wind speed) parameters, measured simultaneously before strong earthquakes in Kamchatka region (November 15, 2006, М = 8.3; January 13, 2007, М = 8.1; January 30, 2016, М = 7.2), are studied for the first time in detail. It is found that a successively anomalous increase in temperature, despite the negative regular trend in these winter months, was observed in the period of six–seven days before the occurrences of earthquakes. An anomalous temperature increase led to the formation of “winter thunderstorm” conditions in the near-surface atmosphere of Kamchatka region, which was manifested in the appearance of an anomalous, type 2 electrical signal, the amplification of and intensive variations in electrical conductivity, heavy precipitation (snow showers), high relative humidity of air, storm winds, and pressure changes. With the weak flow of natural heat radiation in this season, the observed dynamics of electric and meteorological processes can likely be explained by the appearance of an additional heat source of seismic nature.



Transverse resonance in the high-latitude section of the Earth–ionosphere waveguide during the solar eclipse of March 20, 2015
Abstract
The spectra of radio atmospheric signals (spherics) recorded simultaneously at two observatories of the Polar Geophysical Institute, Lovozero (67.97° N, 35.08° E) and Barentsburg (78.08° N, 14.22° E), during the solar eclipse on March 20, 2015 are presented. The peculiarities of the behavior of the first critical frequency of the Earth-ionosphere waveguide during the eclipse are described. The effective altitude of the reflective layer of ionosphere is assessed.



Ionospheric irregularities in periods of meteorological disturbances
Abstract
The results of observations of the total electron content (TEC) in periods of storm disturbances of meteorological situation are presented in the paper. The observational results have shown that a passage of a meteorological storm is accompanied by a substantial decrease in values of TEC and critical frequencies of the ionospheric F2 region. The decreases in values of these ionospheric parameters reach 50% and up to 30% in TEC and critical frequency of the F2 layer, respectively, as compared to meteorologically quiet days. Based on qualitative analysis, it is found that the processes related to formation of local regions of thermospheric heating due to a dissipation of AGW coming into the upper atmosphere from the region of the meteorological disturbance in the lower atmosphere are a possible cause of these ionospheric disturbances.



Critical analysis of active methods of ozone layer recovery
Abstract
A critical analysis is given for various methods for recovery of the ozone layer of the Earth: the emission of alkane gases, the destruction of freons by laser IR radiation and with microwave discharge, exposure to laser UV radiation and electric discharge in the atmosphere, the use of solar radiation, laser infrared radiation, and gamma rays, and the creation of an artificial formation at high altitudes that shields the solar radiation dissociating ozone. The optimal methods are discussed in terms of their effectiveness, economic costs, and environmental consequences. These include the use of gamma rays sources, electric discharge in the atmosphere, and microwave breakdown.


