


Vol 56, No 2 (2016)
- Year: 2016
- Articles: 14
- URL: https://journals.rcsi.science/0016-7932/issue/view/9418
Article
The discovery and the first studies of the auroral oval: A review
Abstract
The auroral oval concept radically changed the view that existed for a century in geophysics on the patterns in aurora planetary spatial–temporal distributions. The auroral zone, which is located around the geomagnetic pole as a continuous ring at a constant angular distance of ~23°, was replaced by the auroral oval in 1960. The auroral oval spatial position reflects the shape of the Earth’s magnetosphere, which is compressed by the solar wind on the dayside and stretches into the magnetotail on the nightside. The oval is fixed relative to the direction toward the Sun and is located around the geomagnetic pole at altitudes of the upper atmosphere at an angular distance of ~12° at noon and ~23° at midnight. After an animated discussion over several subsequent years, the existence of the auroral oval was accepted by the scientific community as a paradigm of a new science, i.e., solar–terrestrial physics. The oval location indicates the zone where electron fluxes with energies varying from ~100 eV to ~20 keV precipitate into the upper atmosphere and is related to the structure of plasma domains in the Earth’s magnetosphere. The paper describes the scientific studies that resulted in the concept of the auroral oval existence. It has been shown how this concept was subsequently justified in the publications by Y.I. Feldstein and O.B. Khorosheva. The issue of the priority of the auroral oval concept introduction into geophysics has been considered. The statement that the concept of the oval is an archaic paradigm of solar–terrestrial physics has been called into question. Some scientific fields in which the term auroral oval or simply oval was and is the paradigm have been listed.



Cosmic rays during great geomagnetic storms in cycle 23 of solar activity
Abstract
Variations in the cosmic ray intensity (specifically, Forbush effects) and in the geomagnetic cutoff rigidity planetary system during powerful geomagnetic disturbances in cycle 23 were studied based on worldwide station network data by the global spectrographic survey method. The cosmic ray variation spectra during these periods and the spectral indices of these variations when the spectrum was approximated by the power function of the particle rigidity varying from 10 to 50 GV during different Forbush effect development phases are presented. It was indicated that the spectral indices of cosmic ray variations during spectrum approximation by the power function of the particle rigidity are larger during the maximal modulation phase than during the cosmic ray intensity decline and recovery phases. The fact that the amplitude of the second harmonic of the cosmic ray pitch angle anisotropy did not increase on November 20, 2003, confirms that the Earth fell into a Sun-independent spheromark magnetic cloud. The increased amplitudes of the second harmonic of the cosmic ray pitch angle anisotropy during other Forbush effects in July 2000, March–April 2001, October 2003, and November 2004 indicate that the Earth was in the coronal mass ejection region, in which the interplanetary magnetic field structure was loop-like during these periods.



Effects of solar proton events in the mesosphere/lower thermosphere region according to the data of meteo radar wind measurements at high and middle latitudes
Abstract
Data from meteo radar measurements of the wind in the mesosphere/lower thermosphere region at high latitudes of the Southern Hemisphere (Molodezhnaya station, 68° S, 45° E) and at middle latitudes of the Northern Hemisphere (Obninsk station, 55° N, 37° E) during solar proton events that took place in 1989, 1991, 2000, 2005, and 2012 are analyzed in the paper. In 1989 and 1991, we succeeded in observing the response to solar proton evens at both stations simultaneously. The results show that solar proton events lead to a change in the wind regime of the mesosphere and lower thermosphere. At high latitudes of the Southern Hemisphere, significant changes are observed in the values of the velocities of the meridional and zonal components of the prevailing wind. In the case of powerful solar proton events, the amplitude of the semidiurnal tide grows in the vicinity of the proton flux maximum. The response to these events depends on the season. The reaction of the prevailing wind at middle latitudes shows the same features as the reaction of the wind at high latitudes. However no unambiguous response of the tide amplitude is observed. In the summer season, even powerful events (for example, in July 2000) cause no changes in the wind regime parameters in the midlatitude region of the mesosphere/lower thermosphere.



Exact solutions of magnetohydrodynamics for describing different structural disturbances in solar wind
Abstract
We use analytical methods of magnetohydrodynamics to describe the behavior of cosmic plasma. This approach makes it possible to describe different structural fields of disturbances in solar wind: shock waves, direction discontinuities, magnetic clouds and magnetic holes, and their interaction with each other and with the Earth’s magnetosphere. We note that the wave problems of solar–terrestrial physics can be efficiently solved by the methods designed for solving classical problems of mathematical physics. We find that the generalized Riemann solution particularly simplifies the consideration of secondary waves in the magnetosheath and makes it possible to describe in detail the classical solutions of boundary value problems. We consider the appearance of a fast compression wave in the Earth’s magnetosheath, which is reflected from the magnetosphere and can nonlinearly overturn to generate a back shock wave. We propose a new mechanism for the formation of a plateau with protons of increased density and a magnetic field trough in the magnetosheath due to slow secondary shock waves. Most of our findings are confirmed by direct observations conducted on spacecrafts (WIND, ACE, Geotail, Voyager-2, SDO and others).



Position variations of the polarization jet and injection boundary of energetic ions during substorms
Abstract
The comparison of selected cases of polarization jet observation at ground stations and measurements of energetic ions at the AMPTE/CCE satellite shows that these phenomena occur simultaneously and on the same L shells. Polarization jet observations at DMSP satellites make it possible to statistically determine the dependence of its equatorial boundary position on the AE-index value. It is also shown that, in the case of isolated magnetic disturbances, the position of the inner boundary of injection of energetic ions measured at the AMPTE/CCE satellite depends on the AE index. It was found that the dependences of both boundaries on the AE index match over a wide range of AE variations. This is evidence that the equatorial boundary polarization jet band and the inner boundary of the injection of energetic ions are physically interconnected and are formed on the same L shells during substorms.



Observations of large-scale plasma convection in the magnetosphere with respect to the geomagnetic activity level
Abstract
The data of the ionospheric observations (the daily f plots) at the Yakutsk meridional chain of ionosondes (Yakutsk–Zhigansk–Batagai–Tixie Bay) with sharp decreases (breaks) in the critical frequency of the regular ionospheric F2 layer (foF2) are considered. The data for 1968–1983 were analyzed, and the statistics of the foF2 break observations, which indicate that these breaks are mainly registered in equinoctial months and in afternoon and evening hours under moderately disturbed geomagnetic conditions, are presented. Calculations performed using the prognostic model of the high-latitude ionosphere indicate that the critical frequency break position coincides with the equatorial boundary of large-scale plasma convection in the dusk MLT sector.



Peculiarities of the azimuthal propagation of perturbations in discrete auroral arcs during the substorm growth phase
Abstract
The azimuthal propagation of luminosity inhomogeneities (of the bead type) within auroral arcs extended from east (E) to west (W) during the substorm growth phase is studied with high-precision groundbased optical observations at PGI observatories and THEMIS Canadian ground stations. The propagation velocities and directions are compared with the predictions of the known theories that were proposed in order to interpret this phenomenon. It is concluded that there is no unified theory capable of explaining the disturbance propagation peculiarities observed in different events.



Studying geomagnetic pulsation characteristics with the local approximation method
Abstract
A local approximation method based on piecewise sinusoidal models has been proposed in order to study the frequency and amplitude characteristics of geomagnetic pulsations registered at a network of magnetic observatories. It has been established that synchronous variations in the geomagnetic pulsation frequency in the specified frequency band can be studied with the use of calculations performed according to this method. The method was used to analyze the spectral–time structure of Pc3 geomagnetic pulsations registered at the network of equatorial observatories. Local approximation variants have been formed for single-channel and multichannel cases of estimating the geomagnetic pulsation frequency and amplitude, which made it possible to decrease estimation errors via filtering with moving weighted averaging.



Fe/O ratio variations during the disturbed stage in the development of the solar cosmic ray fluxes: Manifestations of the first ionization potential effect in the solar cosmic ray composition
Abstract
The accelerated particle energy spectra in different energy intervals (from 0.06 to 75.69 MeV n–1) have been constructed for various powerful flare events (1997–2006) with the appearance of solar cosmic rays (SCRs) based on the processing of data from the Advanced Composition Explorer (ACE) and WIND spacecraft. Flares were as a rule accompanied by coronal mass ejections. Different specific features in the particle spectra behavior, possibly those related to different acceleration processes, were revealed when the events developed. The Fe/O abundance ratio in different energy intervals during the disturbed development of flareinduced fluxes has been qualitatively estimated. It has been established that ground level event (GLE) fluxes represent an individual subclass of gradual events according to the character of Fe/O variations. The manifestations of the first ionization potential (FIP) effect in the composition of SCRs during their propagation have been qualitatively described.



Trapping of sensing radio waves in an artificial large-scale ionospheric cavity
Abstract
The results of phenomenological analysis of data from oblique chirp sounding of the ionosphere in a 2007 heating experiment with possible recording of the effect of trapping sounding-radiation in an artificial ionospheric cavity and spotlighting it in the near (over the Earth’s surface) zone of the Sura facility are presented. The physical aspects of forming an additional trace on ionograms of oblique radio-sounding of the perturbed region of the ionosphere are discussed.



Use of the index of TEC vertical variation disturbance in studying ionospheric effects of the Chelyabinsk meteorite
Abstract
The results of an analysis of the ionospheric effects accompanying fall of the Chelyabinsk meteorite on February 15, 2013 are presented using a method of calculating the index of the disturbance of total electron content vertical variations (Wtec) according to data from the GPS receiver network. A substantial increase (by a factor of 2–3) in the Wtec index with a duration of ~1.5 h was observed in the studied region after the main height explosion accompanying the meteorite fall at 0320 UT. The ionospheric response in Wtec was most significant statistically registered at the radio rays “receiver–satellite” for the GPS located southward from the place of explosion.



Paleomagnetic study of the Tunguska catastrophe epicenter
Abstract
The Tunguska catastrophe occurred in the area of the East Siberian magnetic anomaly on June 30, 1908. The epicenter of the explosive destruction of the Tunguska cosmic body (TCB) was above the central neck of a paleovolcano (Mt. Stoikovich). According to the paleomagnetic data available, the bedrocks on the top of Mt. Stoikovich carry remanent magnetization, which is substantially higher than that in rocks from neighboring mountains. Analysis of the results of paleomagnetic measurements of rock samples collected in the vicinity of the Tunguska catastrophe epicenter showed that the destruction of the cosmic body was accompanied by the formation of multidirectional magnetic fields, which provide disturbances spreading over a distance of 25 km from the epicenter. The chaotic distribution pattern of magnetization vectors measured in the soil in the vicinity of the Tunguska catastrophe epicenter confirms the previously expressed assumption that destruction of the TCB was accompanied with multiple discharges. According to this, we can conclude that the matter of the Tunguska cosmic body was dispersed around the epicenter in a zone approximately 25 km in diameter.



Changes of lithospheric magnetic anomalies with altitude (According to the CHAMP satellite)
Abstract
Maps of the magnitude of the full vector and the vertical component of an anomalous lithospheric magnetic field over the Voronezh anticline (VA) for the three high-altitude observation levels were compiled based on geomagnetic measurements from the CHAMP satellite. The isometric positive anomaly centered at about 50° N and 37° E stands out. Its amplitude decreases with increasing observation altitude without changing the form. Comparison of the parameters of the detected anomaly with data obtained for this site by other methods confirms that it really exists and that its spatial position is accurately determined, which indicates the reliability of the values of the selected field of lithospheric anomalies. The change in the parameters of the magnetic anomaly with respect to the observation level over the Earth’s surface is consistent with the concepts of geological structural features of the lithosphere in the region. The anomaly offset to the south on the satellite altitudes apparently indicates an uplift of crystalline basement rocks and a more southern position of VA deep roots relative to that accepted in the global magnetization model. The use of satellite data obtained at different altitudes opens up additional possibilities for the application of gradient methods in the interpretation of the magnetic fields of lithospheric anomalies.



Long-period geomagnetic pulsations as solar flare precursors
Abstract
We compare long-period pulsations of the horizontal component of the geomagnetic field at intervals that precede extreme solar flares. To this end, we use the wavelet–skeleton technique to process the geomagnetic field disturbances recorded at magnetic stations over a wide geographical range. The synchronization times of wavelet–skeleton spectral distributions of long-period pulsations of geomagnetic oscillations over all magnetic stations are shown as normalized histograms. A few days before an intense solar flare, the histograms show extremes. This means that these extremes can be regarded as flare precursors. The same technique is used to analyze the parameters of near-Earth space. The histograms obtained in this case are free of the aforementioned extrema and, therefore, cannot point to an upcoming flare. The goal of this study is to construct a correlation–spectral method for the short-term prediction of solar flare activity.


