High precision determination of carbon isotope composition and concentration of dissolved inorganic carbon in seawaters

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Determination of the isotopic composition and concentration of dissolved inorganic carbon (DIC) in sea water requires not only high measurement accuracy, but also the development of unified approaches to data standardization and material collection. In this work, we studied the effect of sampling methods (“in a container” and “in a vial with acid”, with and without the toxin) on the results of determining the values of δ13C(DIC) and the concentration of DIC in sea water. The analytical protocol was described in detail, based on many years of experience in the selection, measurement and standardization of data obtained for a large number of water samples of the Arctic seas. According to this protocol, the values of δ13C(DIC) and [DIC] can be determined with an error of less than 0.05 ‰ (1σ) and 4.5 rel.% respectively. It has been shown that sampling “in a vial with acid” with their storage for 4 months is accompanied by significant contamination by atmospheric carbon dioxide with an underestimation of δ13C(DIC) values by an average of 0.3–0.8 ‰ and an overestimation of [DIC] values by an average of two times. The absence of the toxin that stops biological activity does not lead to significant shifts in the DIC concentration, but it strongly affects the δ13C(DIC) values, which become underestimated by an average of 1 ‰. Using sampling “in a container”, with toxin addition, and following other recommendations, the samples retain the isotope and concentration parameters of DIC for at least year.

Texto integral

Acesso é fechado

Sobre autores

E. Dubinina

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences (IGEM RAS)

Autor responsável pela correspondência
Email: elenadelta@gmail.com
Rússia, Starominetny, 35, Moscow, 119017

S. Kossova

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences (IGEM RAS)

Email: elenadelta@gmail.com
Rússia, Starominetny, 35, Moscow, 119017

Y. Chizhova

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences (IGEM RAS)

Email: elenadelta@gmail.com
Rússia, Starominetny, 35, Moscow, 119017

Bibliografia

  1. Dubinina E. O., Kossova S. A., Miroshnikov A.Yu., Avdeenko A. S., Chizhova Yu.N. (2020) Dissolved Inorganic Carbon ([DIC], δ13C(DIC) in Waters of the Eastern East Siberian Sea. Geochem. Int., 58 (8). 867–886. doi: 10.1134/S0016702920080054
  2. Alling V., Porcelli D., Morth C. M., Anderson L. G., Sanchez-Garcia L., Gustafsson O., Andersson P. S., Humborg C. (2012) Degradation of terrestrial organic carbon, primary production and out-gassing of CO2 in the Laptev and East Siberian Seas as inferred from δ13C values of DIC. Geochim Cosmochim Acta, 95, 143–159. doi: 10.1016/j.gca.2012.07.028
  3. Anderson L. G., Jutterström S., Hjalmarsson S., Wåhlström I., Semiletov I. P. (2009) Outgassing of CO2 from Siberian Shelf seas by terrestrial organic matter decomposition. Geophys. Res. Lett. 36 (20), L20601. doi: 10.1029/2009GL040046
  4. Argentino C., Kalenitchenko D., M. Lindgren, G. Panieri. (2023) HgCl2 addition to pore water samples from cold seeps can affect the geochemistry of dissolved inorganic carbon ([DIC], δ13CDIC). Mar. Chem., 251, 104236. doi: 10.1016/j.marchem.2023.104236
  5. Assayag N., Rive K., Ader M., Jezequel D., Agrinier P. (2006) Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples. Rapid Commun. Mass Spectrom., 20, 2243–2251. doi: 10.1002/rcm.2585
  6. Atekwana E. A., Krishnamurthy R. V. (1998) Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: application of a modified gas evolution technique. Joum. Hydrol., 205, 265–278. doi: 10.1016/S0022-1694(98)00080-8
  7. Atekwana E. A., Krishnamurthy R. V. (2004) Extraction of Dissolved Inorganic Carbon (DIC) in Natural Waters for Isotopic Analyses. Handbook of Stable Isotope Analytical Techniques, 1, 203–228. doi: 10.1016/B978-044451114-0/50012-0
  8. Bauch D., Polyak L., Ortiz J. (2015) A baseline for the vertical distribution of the stable carbon isotopes of dissolved inorganic carbon (δ13CDIC) in the Arctic Ocean. Arktos,1, Art. No. 15, 1–13. doi: 10.1007/s41063-015-0001-0
  9. Bauch H. A., Erlenkeuser H., Bauch D., Mueller-Lupp T., Taldenkova E. (2004) Stable oxygen and carbon isotopes in modern benthic foraminifera from the Laptev Sea shelf: implications for reconstructing proglacial and profluvial environments in the Arctic. Mar. Micropaleont., 51 (3–4), 285–300. doi: 10.1016/j.marmicro.2004.01.002
  10. Brandes J. A. (2009) Rapid and precise δ13C measurement of dissolved inorganic carbon in natural waters using liquid chromatography coupled to an isotope-ratio mass spectrometer. Limnol. Oceanography: Methods, 7 (11), 730–739. doi: 10.4319/lom.2009.7.730
  11. Campeau A., Wallin M. B., Giesler R., Lofgren S., Morth C. M., Schiff S., Venkiteswarwn J. J., Bishop K. (2017) Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Sci Rep. 7 (1), 9158. doi: 10.1038/s41598-017-09049-9
  12. Capasso G., Favara R., Grassa F., Inguaggiato S., Longo M. (2005) Online technique for preparing and measuring stable carbon isotope of total dissolved inorganic carbon in water samples (δ13CTDIC). Ann. Geophys., 48 (1), 159–166. doi: 10.4401/ag-3190
  13. Cheng L., Normandeau C., Bowden R., Doucett R., Gallagher B., Gillikin D. P., Kumamoto Y., McKay J. L., Middlestead P., Ninnemann U., Nothaft D., Dubinina E. O., Quay P., Reverdin G., Shirai K., Mørkved P. T., Theiling B. P., van Geldern R., Wallace D. W.R. (2019) An international intercomparison of stable carbon isotope composition measurements of dissolved inorganic carbon in seawater. Limnol. Oceanogr., Methods, 17 (3), 200–209. doi: 10.1002/lom3.10300
  14. Deines P., Langmoir D., Harmon R. S. (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim. Cosmochim. Acta, 38 (7), 1147–1164. doi: 10.1016/0016-7037(74)90010-6
  15. Dickson A. G., Sabine, C.L. and Christian J. R. (Eds.) 2007. Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication. 3, 191 pp.
  16. Doctor D. H., Kendall C., Sebestyen S. D., Shanley J. B., Ohte N., Boyer E. W. (2008) Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. Hydrol. Proc., 22 (14), 2410–2423. doi: 10.1002/hyp.6833
  17. Friedman I. (1970) Some investigations of the deposition of travertine from hot springs. Geochim. Cosmochim. Acta, 34 (12), 1003–1315. doi: 10.1016/0016-7037(70)90043-8
  18. Galimov E. M. (2004) The pattern of δ13Corg versus HI/OI relation in recent sediments as an indicator of geochemical regime in marine basins: comparison of the Black Sea, Kara Sea, and Cariaco Trench. Chem. Geol., 204 (3), 287–301. doi: 10.1016/j.chemgeo.2003.11.014
  19. Gebbinck C. D.K., Sang-Tae K., Knyf M. Wyman J. (2014). A new online technique for the simultaneous measurement of the δ13C value of dissolved inorganic carbon and the δ18O value of water from a single solution sample using continuous-flow isotope ratio mass spectrometry. Rapid Comm. Mass Spectrom. 28 (5), 553–562. doi: 10.1002/rcm.6812
  20. Gillikin D. P., Bouillon S. (2007) Determination of d18O of water and d13C of dissolved inorganic carbon using a simple modification of an elemental analyzer-isotope ratio mass spectrometer: an evaluation. Rapid Comm. Mass Spectrom., 21 (8), 1475–1478. doi: 10.1002/rcm.2968
  21. Gleason J. D., Friedman I., Hanshaw B. B. (1969) Extraction of dissolved carbonate species from natural water for carbon-isotope analysis. US Geological Survey Prof. Pap., 650-D: D248–250.
  22. Graber E. R., Aharon P. (1991) An improved microextraction technique for measuring dissolved inorganic carbon (DIC), δ13CDIC and δ18OH2O from milliliter-size water samples. Chem. Geol., 94 (2), 137–144. doi: 10.1016/S0009-2541(10)80025-7
  23. Holt B. D., Sturchio N. C., Arehart G. B., Bakel A. J. (1995) Ultrasonic vacuum extraction of gases from water for chemical and isotopic analysis. Chem. Geol., 122 (1–4), 275–284. doi: 10.1016/0009-2541(95)00036-L
  24. Humphreys M. P., Greatrix F. M., Tynan E., Achterberg E. P., Griffiths A. M., Fry C. H., Garley R., McDonald A., Boyce A. (2016) Stable carbon isotopes of dissolved inorganic carbon for a zonal transect across the subpolar North Atlantic Ocean in summer 2014. Earth System Sci. Data, 8, 221–233. doi: 10.5194/essd-2015-36
  25. Keeling C. D., Mook W. G., Tans P. P. (1979) Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature, 277, 121–123. doi: 10.1038/277121a0
  26. Kroopnick P. (1974) The dissolved O2-CO2–13C system in the eastern equatorial Pacific. Deep-Sea Res., 21 (3), 211–227.
  27. Laskar A. H., Gandhi N., Thirumalai K., Yadava M. G., Ramesh R., Mahajan R. R., Kumar D. (2014) Stable carbon isotopes in dissolved inorganic carbon: extraction and implications for quantifying the contributions from silicate and carbonate weathering in the Krishna River system during peak discharge. Isotopes in Environ. Health Stud., 50 (2), 156–168. doi: 10.1080/10256016.2014.878715
  28. Levitt N. P. (2014) Sample matrix effects on measured carbon and oxygen isotope ratios during continuous-flow isotope-ratio mass spectrometry. Rapid Comm. Mass Spec., 28 (21), 2259–2274. doi: 10.1002/rcm.7019
  29. McNichol A. P., Quay P. D., Gagnon A. R., Burton J. R. (2010) Collection and measurement of carbon isotopes in seawater DIC. The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines IOCCP Report No 14, ICPO Publication Series No. 134, Version 1.
  30. Mook WG, Bommerson JC, Staverman WH. (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett., 22 (2), 169. doi: 10.1016/0012-821X(74)90078-8
  31. Nelson S. T. (2000) Sample vial influences on the accuracy and precision of carbon and oxygen isotope ratio analysis in continuous flow mass spectrometric applications. Rapid Comm. Mass Spec., 14 (4), 293–297. doi: 10.1002/(SICI)1097-0231(20000229)14:4<293:: AID-RCM869>3.0.CO;2-L
  32. Olack G. A., Colman A. S., Pfister C. A., Wootton J. T. (2018) Seawater DIC analysis: The effects of blanks and long-term storage on measurements of concentration and stable isotope composition. Limnol. Oceanogr. Methods, 16 (3), 160–179. doi: 10.1002/lom3.10235
  33. Ortiz J. D., Mix A. C., Wheeler P. A., Key R. M. (2000) Anthropogenic CO2 invasion into the northeast Pacific based on concurrent δ13C and nutrient profiles from the California Current. Glob. Biogeochem. Cycles, 14 (3), 917–929. doi: 10.1029/1999GB001155
  34. Prosser S. J., Brookes S. T., Linton A., Preston T. (1991) Rapid, Automated Analysis of 13C and 18O of CO2 in Gas Samples by Continuous-flow, Isotope Ratio Mass Spectrometry. Biol. Mass Spec. 20 (11), 724–730. doi: 10.1002/bms.1200201112
  35. Quay P., Sonnerup R., Stutsman J., Maurer J., Kortzinger A., Padin X. A, Robinson C. (2007) Anthropogenic CO2 accumulation rates in the North Atlantic Ocean from changes in the 13C/12C of dissolved inorganic carbon. Global Biogeochem. Cycles, 21 (1), GB1009. doi: 10.1029/2006GB002761
  36. Salata G. G., Roelke L. A., Cifuentes L. A. (2000) A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon. Mar. Chem., 69 (1–2), 153–161. doi: 10.1016/S0304-4203(99)00102-4
  37. Spötl C. (2006) A robust and fast method of sampling and analysis of δ13C of dissolved inorganic carbon in ground waters. Isotopes in Environ. Health Studies, 41 (3), 217–221. doi: 10.1080/10256010500230023
  38. St-Jean G. (2003) Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous-flow using a total organic carbon analyser. Rapid Comm. Mass Spec., 17 (5), 419–428. doi: 10.1002/rcm.926
  39. Taipale S. J., Sonninen E. (2009) The influence of preservation method and time on the δ13C value of dissolved inorganic carbon in water samples. Rapid Comm. Mass Spec., 23 (16), 2507–2510. doi: 10.1002/rcm.4072
  40. Tan T. C., Pearson G. J., Walker R. W. (1973) Sampling extraction and 13C/12C analysis of total dissolved CO2 in marine environments.Bedford Institute of Oceanography, Canada. Rep. Series BI-R-73–16.
  41. Taylor C. B., Fox V. J. (1996) An isotopic study of dissolved inorganic carbon in the catchment of the Waimakariri River and deep ground water of the North Canterbury Plains, New Zealand. Journ. Hydrol., 186 (1–4), 161–190. doi: 10.1016/S0022-1694(96)03027-2
  42. Torres M. E., Mix A. C., Rugh W. D. (2005) Precise δ13C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuous-flow mass spectrometry. Limnol. Oceanogr., Methods, 3 (8), 349–360. doi: 10.4319/lom.2005.3.349
  43. Vogel J. C., Grootes P. M., Mook W. G. (1970) Isotopic Fractionation between Gaseous and Dissolved Carbon Dioxide. Z. Phys., 230 (3), 225–238. doi: 10.1007/BF01394688
  44. Waldron S., Scott E. M., Vihermaa L. E., Newton J. (2014) Quantifying precision and accuracy of measurements of dissolved inorganic carbon stable isotopic composition using continuous-flow isotope-ratio mass spectrometry. Rapid Comm. Mass Spec., 28 (10), 1117–1126. doi: 10.1002/rcm.6873
  45. Xu J., Lee X., Xiao W., Cao C., Liu S., Wen X., Xu J., Zhang Z., Zhao J. (2016). Interpreting the 13C/12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China. Atm. Chem. Phys. Discuss., 17 (5), 3385–3391. doi: 10.5194/acp-2016-349
  46. Yang T., Jiang S. Y. (2012) A new method to determine carbon isotopic composition of dissolved inorganic carbon in seawater and pore waters by CO2-water equilibrium. Rapid Comm. Mass Spec., 26 (7), 805–810. doi: 10.1002/rcm.6164

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Calibration lines for determining the concentration and isotopic composition of DIC: (a) dependence of the area of the reference peak S (Vs – volts*seconds) on the concentration of the NaHCO3 calibration solution; (b) three-point calibration of δ13C values according to carbonate standards. The parameters of the calibration equations are used to calculate concentrations of DIC and values δ13C(DIC) in samples analyzed in the same measuring series.

Baixar (105KB)
3. Fig. 2. The values of δ13C(DIC) in seawater samples taken at stations 5955 (a) and 5944 (b): 1 – selection “into the container”, 2 - selection “into the vial with acid”. Explanations in the text.

Baixar (124KB)
4. Fig. 3. DIC concentrations in seawater samples taken at stations 5955 (a) and 5944 (b) (flight AI-58): 1 – sampling “into a container”, 2 – sampling “into a vial with acid”.

Baixar (108KB)
5. Fig. 4. Isotopic composition of dissolved non- organic carbon in samples taken at art. 7047 (flight AMK 84): 1 – selection with the addition of toxin, 2 – selection without toxin.

Baixar (104KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies