MÖSSBAUER SPECTROSCOPY WITH A HIGH VELOCITY RESOLUTION APPLIED TO THE STUDY OF IRON-BEARING PHASES IN METEORITES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of our studies of iron-bearing phases in various meteorites using Mössbauer spectroscopy with high velocity resolution were briefly reviewed. Examples of obtained Mössbauer spectra of meteorites and their fitting were considered and demonstrated advantages of this technique for revealing spectral components related to various iron-bearing phases that could not be observed in the spectra recorded by conventional Mössbauer spectroscopy. It was shown that the obtained results can be used for phase identification, phase analysis, estimation of variations in the local microenvironment and hyperfine parameters of 57Fe nuclei, determination of cation ordering in silicate crystals, and calculation of the temperatures of equilibrium cation distribution. Applications for the systematization of ordinary chondrites were also considered.

About the authors

M. V. Goryunov

Institute of Physics and Technology, Ural Federal University named under the first President of Russia B. N. Eltsin

Mira str., 19, Ekaterinburg 620002, Russia

E. V. Petrova

Institute of Physics and Technology, Ural Federal University named under the first President of Russia B. N. Eltsin

Mira str., 19, Ekaterinburg 620002, Russia

A. A. Maksimova

Institute of Physics and Technology, Ural Federal University named under the first President of Russia B. N. Eltsin; University of South Carolina, Department of Chemistry and Biochemistry

Mira str., 19, Ekaterinburg 620002, Russia; Columbia, SC 29208, USA

M. I. Oshtrakh

Institute of Physics and Technology, Ural Federal University named under the first President of Russia B. N. Eltsin

Email: oshtrakh@gmail.com
Mira str., 19, Ekaterinburg 620002, Russia

References

  1. Alenkina I. V., Ushakov M. V., Morais P. C., Kalai Selvan R., Kuzmann E.,Klencsár Z., Felner I., Homonnay Z., Oshtrakh M. I. (2022) Mössbauerspectroscopy with ahigh velocity resolution in the studies ofnanomaterials.Nanomaterials,12, 3748.
  2. Gibb T. C. (1976) Principles of MössbauerSpectroscopy. Berlin: Springer-Science + Business Media, 254 p.
  3. Goryunov M. V., Yakovlev G. A., Chukin A. V., Grokhovsky V. I., Semionkin V. A., Oshtrakh M. I. Ironmeteorites and their weathering products: Mössbauer spectroscopy with ahighvelocity resolution of the iron-bearing minerals. (2016)Eur. J. Mineral.,28, 601–610.
  4. Goryunov M. V., Maksimova A. A.,Oshtrakh M. I. (2023) Advances in analysis of theFe-Ni-Coalloyand iron-bearing minerals in meteorites by Mössbauer spectroscopy with ahigh velocity resolution.Minerals,13, 1126.
  5. Goryunov M. V., Varga G.,Dankházi Z., Felner I., Chukin A. V., Kuzmann E., Homonnay Z.,Grokhovsky V. I., Oshtrakh M. I. Characterization of iron meteorites by scanningelectron microscopy, X-ray diffraction, magnetization measurements and Mössbauer spectroscopy: GibeonIVA. (2023a)Meteorit. Planet. Sci.,58, 875–884.
  6. Goryunov M. V., Varga G., Dankházi Z., Chukin A. V., Felner I., Kuzmann E., Grokhovsky V. I., Homonnay Z.,Oshtrakh M. I. Characterization of iron meteorites byscanning electron microscopy, X-ray diffraction, magnetization measurements and Mössbauer spectroscopy: Mundrabilla IAB-ung. (2023b)Meteorit. Planet. Sci.,58, 1552–1562.
  7. Goryunov M. V., Oshtrakh M. I. (2024)57Fe hyperfineparameters and phase compositions inFe-Ni-Coalloys from iron, stony-ironand stony meteorites.Interact.,245, 19.
  8. Goryunov M. V., Petrova E. V., Chukin A. V., Maksimova A. A., Varga G., Dankházi Z., Felner I., Leitus G., Gritsevich M., Kuzmann E., Homonnay Z., Kohout T., Oshtrakh M. I.(2025a) Comparison of the iron-bearing crystals and phases from TamdakhtH5 and Annama H5 ordinary chondrites by X-ray diffraction, magnetizationmeasurements and Mössbauer spectroscopy.Meteorit. Planet. Sci.,60, 1520–1544. (doi: 10.1111/maps.14368).
  9. Goryunov M. V., Petrova E. V., Chukin A. V., Felner I.,Varga G., Dankházi Z., Leitus G., Gritsevich M., Kuzmann E.,Homonnay Z., Kohout T., Oshtrakh M. I. (2025b) X-ray diffraction, magnetizationmeasurements and Mössbauer spectroscopy of iron-bearing phases from Tamdakht H5and Annama H5 meteorites. 87th Annual Meeting of the MeteoriticalSociety (July 14–18, 2025, Perth). LPI Contribution No. 3088, #5022.
  10. Goryunov M. V., Chukin A. V., Felner I., Varga G., Dankházi Z.,Leitus G., Naumov S. P., Kuzmann E., Homonnay Z.,Oshtrakh M. I.(2025c) Study ofFe-Ni-Coalloys from some ironand stony-iron meteorites by X-ray diffraction, magnetization measurements and Mössbauerspectroscopy. 87th Annual Meeting of the Meteoritical Society (July 14–18,2025, Perth). LPI Contribution No. 3088, #5023.
  11. Goryunov M. V., Varga G.,Dankházi Z., Chukin A. V., Felner I., Kuzmann E., Homonnay Z.,Muftakhetdinova R. F.,Grokhovsky V. I.,Oshtrakh M. I. (2025d) Characterization of ironmeteorites by scanning electron microscopy, X-ray diffraction, magnetization measurements andMössbauer spectroscopy: Kayakent IIIAB.Meteorit. Planet. Sci., 60, 1421–1432. (doi: 10.1111/maps.14363).
  12. Goryunov M. V., Felner I., Varga G., Dankházi Z.,Chukin A. V., Kuzmann E., Homonnay Z., Oshtrakh M. I. (2025e) Studyof Kayakent IIIAB iron meteorite by magnetization measurements and Mössbauerspectroscopy. 87th Annual Meeting of the Meteoritical Society (July 14–18,2025, Perth). LPI Contribution No. 3088, #5021.
  13. Gütlich P., BillE., Trautwein A. (2011) Mössbauer Spectroscopy and Transition Metal Chemistry.Fundamentals and Applications. Heidelberg, Dordrecht, London, New York: Springer, 569 p.
  14. Frauenfelder H. (1962) The Mössbauer Effect. AReview–withaCollection of Reprints, New York: W. A. Benjamin, 356 p.
  15. Kohout T., Haloda J., Halodová P., Meier M. M.M., Maden C.,Busemann H., Laubenstein M., Caffee M. W., Welten K. C.,Hopp J., Trieloff M., Mahajan R. R., Naik S., Trigo-Rodriguez J. M.,Moyano-Cambero C. E., Oshtrakh M. I., Maksimova A. A., Chukin A. V., Semionkin V. A.,Karabanalov M. S., Felner I., Petrova E. V., Brusnitsyna E. V., Grokhovsky V. I.,Yakovlev G. A., Gritsevich M., Lyytinen E., Moilanen J., Kruglikov N. A.,Ishchenko A. V. (2017) Annama H chondrite–mineralogy, physical properties,cosmic ray exposure, and parent body history.Meteorit. Planet. Sci.,52, 1525–1541.
  16. Kruse O. Mössbauer and X-ray study of theeffects of vacancy concentration in synthetic hexagonal pyrrhotites. (1990)Am.Mineral.,75, 755–763.
  17. Maksimova A. A., Klencsár Z., Oshtrakh M. I., Petrova E. V., Grokhovsky V. I., Kuzmann E., Homonnay Z., Semionkin V. A. (2016)Mössbauer parameters of ordinary chondrites influenced by the fit accuracyof the troilite component: An example of Chelyabinsk LL5 meteorite.Hyperfine Interact.,237, 33.
  18. Maksimova A. A., Chukin A. V., Oshtrakh M. I. Revealing of the minor iron-bearing phases in the Mössbauer spectraof Chelyabinsk LL5 ordinary chondrite fragment.(2016a)In:Tuček J,Miglierini M, eds,Proceedings of the International Conference «Mössbauer Spectroscopyin Materials Science 2016», AIP Conference Proceedings, Melville, NewYork: AIP Publishing,Vol. 1781,020016.
  19. Maksimova A. A., Oshtrakh M. I.(2019)Ordinary chondrites: what can welearn using Mössbauer spectroscopy?J. Mol. Struct.,1186, 104–117.
  20. Maksimova A. A., Petrova E. V., Chukin A. V., Karabanalov M. S., Felner I., Gritsevich M., Oshtrakh M. I. (2020) Characterization of thematrix and fusion crust of the recent meteorite fall OzerkiL6.Meteorit. Planet. Sci.,55, 231–244.
  21. Maksimova A. A., Petrova E. V.,Chukin A. V., Karabanalov M. S., Nogueira B. A., Fausto R., Yesiltas M.,Felner I., Oshtrakh M. I. (2020a) Characterization of Kemer L4 meteoriteusing Raman spectroscopy, X-ray diffraction, magnetization measurements and Mössbauer spectroscopy.Spectrochim. Acta, Part A: Molec. Biomolec. Spectroscopy,242,118723.
  22. Maksimova A. A., Petrova E. V., Chukin A. V., Unsalan O.,Szabó Á.,Dankházi Z., Felner I., Zamyatin D. A., Kuzmann E., Homonnay Z.,Oshtrakh M. I. (2020b) Study of Bursa L6 ordinary chondrite byX-ray diffraction, magnetization measurements and Mössbauer spectroscopy.Meteorit. Planet. Sci.,55, 2780–2793.
  23. Maksimova A. A., Unsalan O.,Chukin A. V., Karabanalov M. S., Jenniskens P., Felner I.,Semionkin V. A., Oshtrakh M. I. (2020c) The interior and the fusioncrust in Sariçiçek howardite: study using X-ray diffraction, magnetization measurementsand Mössbauer spectroscopy.Spectrochim. Acta, Part A: Molec. Biomolec.Spectroscopy,228, 117819.
  24. Maksimova A. A., Petrova E. V., Chukin A. V.,Oshtrakh M. I.(2020d)Fe2+partitioning between the M1 and M2sites in silicate crystals in some stony and stony-iron meteoritesstudied using X-ray diffraction and Mössbauer spectroscopy.J. Mol. Struct.,1216,128391.
  25. Maksimova A. A., Oshtrakh M. I. (2021) Applications ofMössbauer spectroscopy in meteoritical and planetary science, PartI:undifferentiated meteorites.Minerals,11, 612.
  26. Maksimova A. A., Goryunov M. V., Oshtrakh M. I. (2021) Applications of Mössbauer spectroscopy in meteoritical and planetaryscience, PartII: differentiated meteorites, Moon and Mars.Minerals,11, 614.
  27. Maksimova A. A., Petrova E. V., Chukin A. V., Nogueira B. A., Fausto R., Szabó Á., Dankházi Z., Felner I., Gritsevich M., Kohout T., Kuzmann E., Homonnay Z., Oshtrakh M. I. (2021a) Bjurböle L/LL4ordinary chondrite properties studied by Raman spectroscopy, X-ray diffraction, magnetizationmeasurements and Mössbauer spectroscopy.Spectrochim. Acta, Part A: Molec.Biomolec. Spectroscopy,248, 119196.
  28. Oshtrakh M. I., Semionkin V. A. (2013) Mössbauer spectroscopy with ahigh velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnologicalresearch.Spectrochim. Acta, Part A: Molec. Biomolec. Spectroscopy,100, 78–87.
  29. Oshtrakh M. I., Semionkin V. A. (2016)Mössbauer spectroscopy withahigh velocity resolution: principles and applications. In:Tuček J,Miglierini M, eds,Proceedings of the International Conference «Mössbauer Spectroscopyin Materials Science 2016», AIP Conference Proceedings, Melville, NewYork: AIP Publishing,Vol. 1781,020019.
  30. Oshtrakh M. I., Maksimova A. A., Goryunov M. V., Petrova E. V., Felner I., Chukin A. V., Grokhovsky V. I.(2018)Study of metallicFe-Ni-Coalloy and stony part isolated fromSeymchan meteorite using X-ray diffraction, magnetization measurement and Mössbauer spectroscopy.J. Mol. Struct.,1174, 112–121.
  31. Oshtrakh M. I.,Maksimova A. A., Chukin A. V., Petrova E. V.,Jenniskens P., Kuzmann E., Grokhovsky V. I., Homonnay Z., Semionkin V. A.(2019) Variability of Chelyabinsk meteoroid stones studied by Mössbauer spectroscopyand X-ray diffraction.Spectrochim. Acta, Part A: Molec. Biomolec. Spectroscopy,219, 206–224.
  32. Petrova E. V., Maksimova A. A., Chukin A. V., Oshtrakh M. I.(2019) X-ray diffraction and Mössbauer spectroscopy ofGandom Beryan 008ordinary chondrite.Hyperfine Interact.,240, 42.
  33. Petrova E. V., Chukin A. V.,Varga G., Dankházi Z., Leitus G., Felner I., Kuzmann E.,Homonnay Z., Grokhovsky V. I., Oshtrakh M. I. (2024) Characterization of bulkinterior and fusion crust of Calama 009 L6 ordinary chondrite.Meteorit. Planet. Sci.,59, 2865–2879.
  34. Rubin A. E.(1997) Mineralogy ofmeteorite groups.Meteorit. Planet. Sci.,32, 231–247.
  35. Rubin A. E.,Ma C. (2017) Meteoritic minerals and their origins.Chem. Erde,77, 325–385.
  36. Vertes A., Korecz L., Burger K. (1979)Mössbauer Spectroscopy. Budapest: Academia Kiada, 432 p.
  37. Wasson J. T.(1974) Meteorites. Classification and Properties. Berlin, Heidelberg,New York: Springer-Verlag, 320 p.
  38. Wertheim G. K. (1964) The Mössbauer Effect,Principles and Applications. New York: Academic Press, 116 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».