Geohimiâ
ISSN (print): 0016-7525
Founders: V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Editor-in-Chief: Yuri Aleksandrovich Kostitsyn, Academician of the Russian Academy of Sciences, Doctor of Geological and Mineralogical Sciences
Frequency / Access: 12 issues per year / Subscription
Included in: White List (2nd level), Higher Attestation Commission List, RISC
Media registration certificate: No. FS 77 – 83947 dated 09/30/2022
Edição corrente



Volume 70, Nº 2 (2025)
Articles
Experimental data on the formation of nanophase iron in the lunar soil
Resumo
The formation of nanophase metallic iron (npFe0) in lunar regoliths, which is observed in the condensate films on the surface of mineral grains and in agglutinate glasses, is one of the signs of “space weathering” on the Moon under the influence of solar wind and micrometeorite bombardment. The paper presents the results of laser experiments simulating micrometeorite “impact” on basalt, olivine, pyroxene and some other types of targets. Numerous iron nanospherules that are often arranged into chains and clusters were found in the molten products of the “impact”. The experiments showed that npFe0 can be formed without the participation of implanted solar wind ions (hydrogen ions) as a reducing agent, as well as without iron condensation from shock-formed vapor. Similar clusters of nanophase metallic iron and chain structures are observed in the impact glasses of the lunar regolith and asteroid particles.



Compositional evolution of calzirtite and perovskite in phoscorites and carbonatites of the Guli alkaline-ultramafic complex (Polar Siberia)
Resumo
The paper presents data on the composition and phase heterogeneity of calzirtite Ca2Zr5Ti2O16 and perovskite CaTiO3, which are HFSE oxides that crystallized during the early stages of formation of the carbonatite rock series of the Guli alkaline–ultramafic complex in Polar Siberia. The composition of HFSE minerals systematically changed during the evolution of the carbonatite melt from phoscorites to carbonatites. The calzirtite enriched up to 6 wt % Nb2O5, and the perovskite enriched up to 15 wt % Nb2O5, 7.7 wt % ZrO2, and 6 wt % LREE2O3 in the phoscorites and early calcite carbonatites. Perovskite with low concentrations of admixtures crystallized in the late calcite carbonatites in association with U-, Th-, Ta-rich fluorcalciopyrochlore, thorianite, zirconolite, and baddeleyite. The composition of perovskite-group minerals evolved according to the following of isomorphic exchange schemes: Nb5+ + Fe3+ ↔ Ti4+ + + Zr4+ and 2Ca2+ ↔ Na+ + REE3+. The enrichment of the early calzirtite and perovskite generations in HFSE is explained by the high Nb, Zr, and LREE partition coefficients in carbonatite melt–mineral equilibria. During the crystallization of the carbonatite melt, the activity of alkaline elements decreased, which is confirmed by a decrease in sodium content in the perovskite and a change in the composition of the solid inclusions. The early generations of perovskite and calzirtite from the phoscorites commonly host numerous polyphase inclusions of Ca, Na, K, Ba, and Sr carbonates, halides, and alkali metal sulfides, whereas calcite, fluorapatite, pyrophanite, and barite are found in the late generations of these minerals. It is shown that the crystallization of the phoscorites have crystallized from anhydrous melt that contained no water, and this was favorable for the preservation of alkaline carbonates as solid inclusions in minerals.



Morphological features and genesis of the interpenetration twins of cubic diamond crystals
Resumo
The paper presents analysis of the crystal morphology of two similarly shaped interpenetration twins of cubic crystals: the Chinese Lantern diamond (Arkhangelsk diamond mining province, provided for this study by courtesy of the ALROSA company) and a diamond crystal from Brazil, which has been studied in much detail by A.E. Fersman. Comparison of data on these diamonds, which were obtained using original methodological techniques for interpreting morphological indications of crystal growth and dissolution, revealed a number of crystal morphological features of crystals characteristic of regular accretions of this type. In addition to tetragonal pits characteristic of the cuboids, ribbon-shaped, jagged, and drop-shaped relief features typical of surface dissolution, a new type of symmetrical sawtooth microrelief associated with etching of octahedral layers of cuboid growth was discovered on the diamond from the Arkhangelsk province. In accordance with the height and direction of the steps of the relief pattern, the development sequence of the aforementioned types of microrelief is determined according to the increase in the depth of dissolution and the degree of change in the curvature of the surface of the tetrahexahedron on twin cuboids. The genesis of the characteristic equatorial sharp ridge of octahedron faces encircling the twinning plane was revealed. It is demonstrated to has been formed in relation to an early stage of the systematic coalescence of fibrous diamond cuboids and to be a determining condition of its development, first as a interpenetration twin of flat-faced octahedral crystals. Crystal morphological similarities between indications of dissolution on curved tetrahexahedra from kimberlites of the Arkhangelsk pipes and placer sources in Brazil and the north of the Yakutian diamond-bearing province is discussed.



Standard thermodynamic properties of Ag3Sn (shosanbetsuite): EMF data
Resumo
Thermodynamic properties of shosanbetsuite (Ag3Sn) are first determined in the Ag–Sn system in a galvanic cell (–) Pt | Gr | Ag | RbAg4I5 | Ag3Sn, Sn | Gr | Pt (+) within the temperature range of 327–427 K in vacuum. Analysis of the data makes it possible to calculate the standard (298.15 K, 105 Pa) ΔfG0, ΔfH0, and S0 of Ag3Sn: –21238, –18763 J mol–1, and 187.5 J K–1 mol–1, respectively.



Аssessment of soil cover geochemical composition in the technogenically altered territory of the Pioneer gold deposit (Upper Amur Region)
Resumo
The results of geochemical studies of soils and anthropogenic grounds within the territory of the large Pioneer gold ore deposit developed in the Amur Region are presented. Using the enrichment indices for the soil and ground cover of the Pioneer deposit territory, the following pollutant elements were determined: As, Sb, Mo, Bi, W, S, Cd, and Pb. Using the methods of mathematical statistics, the background contents of As, Sb, Bi, Mo, W, S, Cd, and Pb in the technogenically transformed territory at the sampling time accounted for 63, 8.84, 0.69, 3.54, 4.19, 529, 0.11, and 36.5 mg/kg, respectively. The exceedance of background values for As, Sb, Bi, Mo, W, and S is caused by the natural metallogenic features of the territory. It has been established that the sources of metal emissions into the environment are mining facilities and structures of the mining complex: quarries, waste dumps, heap leaching areas, gold extraction plant, and tailings dumps.


