


Vol 56, No 13 (2018)
- Year: 2018
- Articles: 7
- URL: https://journals.rcsi.science/0016-7029/issue/view/9438
Article
The Formation of Continental Crust from a Physics Perspective
Abstract
The generation of crustal material and the formation of continental crust with a thickness of ≈40 km involve different physical mechanisms operating over different time-scales and length-scales. This review focusses on the building of a thick crustal assemblage and on the vertical dimension where the consequences of gravity-driven processes are expressed most clearly. Continental crustal material is produced by a sequence of crust and mantle mlelting, fractionation of basaltic melts and sinking of dense mafic cumulates. The repeated operation of these mechanisms over tens of million years leads to a thick stably stratified crust. We evaluate the main mechanisms involved from a physics perspective and identify the key controls and constraints, with special attention to thermal requirements. To form magma reservoirs able to process significant magma volumes and to allow the foundering of mafic cumulates, melt must be fed locally at rates that are larger than that of average crustal growth. This requires the temporary focussing of magmatic activity in a few centers. In some cases, foundering of dense cumulates does not go to completion, leaving a deformed residual body bearing tell-tale traces of the process. Crust must be thicker than a threshold value in a 30–45 km range for mafic cumulates to sink into the mantle below the crust. Once that threshold thickness has been reached, further additions lead to increase the proportion of felsic material in the crust at the expense of mafic lithologies which disappear from the crust. This acts to enhance radiogenic heat production in the crust. One consequence is that crustal temperatures can be kept at high values in times of diminished melt input and also when magmatic activity stops altogether, which may lead to post-orogenic intracrustal melting and differentiation. Another consequence is that the crust becomes too weak mechanically to withstand the elevation difference with neighbouring terranes, which sets a limit on crustal thickening. The thermal structure of the evolving crust is a key constraint on the overall process and depends strongly on radiogenic heat production, which is surely one of the properties that make continental crust very distinctive. In the Archean Superior Province, Canada, the formation of juvenile continental crust and its thermal maturation 2.7 Gy ago can be tracked quite accurately and reproduced by calculations relying on the wealth of heat flow and heat production data available there. Physical models of magma ascent and storage favour the formation of magma reservoirs at shallow levels. This suggests that crustal growth proceeds mostly from the top down, with material that gets buried to increasingly large depths. Vertical growth is accompanied by lateral spreading in two different places. Within the crust, magma intrusions are bound to extend in the horizontal direction. Deeper down, lateral variations of Moho depth that develop due to the focussing of magmatic activity get relaxed by lower crustal flow. This review has not dealt with processes at the interface between the growing crust and the mantle, which may well be where dikes get initiated by mechanisms that have so far defied theoretical analyses. Research in this particular area is required to further our understanding of continental crust formation.



Genetic Interpretation of the Distribution of PGE and Chalcogens in Sulfide-Mineralized Ultramafic Rocks from the Yoko-Dovyren Layered Intrusion
Abstract
The paper presents newly acquired data on concentrations of chalcophile elements and chalcogens (Se and Te) in sulfide-bearing rocks and Cu–Ni ores from the bottom portion of the Yoko-Dovyren Massif, northern Baikal area, Russia. Positive covariations between Pd, Pt, Au, S, and Te in the samples highlight sulfide control on the behavior of these elements, which was related to the redistribution of essentially Fe–Ni sulfide liquids at a magmatic stage. The character of relationships between Pd, Pt, Te, Cu, and S in the rocks led us to distinguish two groups of genetic trends: the first group combines samples from the chilled zone, plagioperidotites, and olivine gabbronorites that compose underlying sills in the central part of the intrusion, and the second one comprises poor and high-grade ores in the northeastern termination of the intrusion (Ozernyi Prospect). We put forward the hypothesis that the first-group trends reflect different degrees of accumulation of crystallization products of the most primitive sulfide liquids, whereas the trends of the second group pertain to sulfide matter significantly depleted in Cu, Te, and PGE. New data on Fe, Ni, Cu, Co, Se, Te, Zn, Mo, Ag, Cd, Sb, Pb, Rh, PGE, and Au concentrations in sulfides from the chilled gabbronorite and ores of the Baikalskoe deposit are presented. Results of thermodynamic modeling (with the COMAGMAT-5 program package) of sulfide saturation in the intercumulus of a primitive orthocumulate are used to reproduce the composition (Cu, Pd, Pt, Au, and Te) of the parental sulfide liquid. The model concentrations of noble metals in the sulfide are demonstrated to be one to two orders of magnitude higher than the concentrations in the “average sulfide” estimated by LA–ICP–MS. More realistic estimates for the composition of the parental sulfide liquids can be obtained by normalizing the bulk concentrations of these elements to 100% sulfide mass. These estimates are in good agreement with results from thermodynamic simulations.



Nitrogen Isotopic Composition of Shungite from the Onega Structure, Russia, and the Origin of the Organic Matter
Abstract
The paper presents first nitrogen isotope analyses in shungites sampled from the core material of boreholes and from adits in the Onega region, Russia. The samples represent all varieties of the rocks, both stratified and migrated, with concentrations of reduced carbon ranging from a few percent to almost 100%. Analyses were carried out on a mass spectrometric complex (designed at the Open University), with the simultaneous measurements of the isotopic composition and concentrations of nitrogen and carbon using the step oxidation technique. It was determined that nitrogen is released mostly when the carbon is oxidized. The individual samples differ from one another in nitrogen isotopic composition and the nitrogen/carbon ratio, which indicates that these samples contain three distinct organic components of biological origin. Variations in δ15N and C/N that correspond to mixing of organic matter of the three types have been also observed during stepped oxidation. One of them has a relatively low C/N of approximately 200 and contains isotopically light nitrogen (δ15N up to –10‰). This component is thought to be primary, produced when the shungite rocks have been formed in a biological cycle involving reduced nitrogen species and formation of chemoautolithotrophic organisms, similar to what nowadays takes places in hydrothermal systems related to volcanic activity in spreading zones in the seafloor. Another component of the organic matter, with a relatively high δ15N from 0 to +3‰ and C/N of approximately 1000, was likely derived from the primary one in the course of diagenesis and metamorphism, due to nitrogen losses, resulted in heavier isotopic composition of the residual nitrogen. Finally, during post metamorphism time, the shungites have been contaminated with organic matter brought by meteoric waters. This organic matter had a relatively high δ15N of approximately +10‰ and the lowest C/N < 50. The different oxidation temperatures of the three organic components explain the reason for the variations in δ15N and C/N during step combustion of the material.



Simultaneous Calculation of Chemical and Isotope Equilibria Using the GEOCHEQ_Isotope Software: Carbon Isotopes
Abstract
The program package GEOCHEQ_Isotope was developed for the simultaneous calculation of chemical and isotope equilibria in hydrothermal and hydrochemical systems by the method of Gibbs free energy minimization. It utilizes the formalism of the β-factor and is a modification of the GEOCHEQ software, which was designed to calculate chemical equilibria. An algorithm was proposed for the calculation of the Gibbs free energy of formation of a rare isotopologue, G*(P, T), from the Gibbs free energy of formation of the main isotopologue, the β-factor of this substance, and the mass ratio of the rare and main isotopes of the element. The ideal mixing of isotopes was assumed. The temperature dependence of the β-factor was unified as a polynomial in reciprocal absolute temperature. The implementation of the software and an appropriate database was illustrated by the example of carbon isotopes. The available information on carbon isotope equilibria involving geochemically important compounds was critically analyzed, and temperature dependences of their β-factors were correspondingly optimized. The thermodynamic database was updated by adding information on the temperature dependence of β-factors specified by eight polynomial coefficients for each substance. The use of the GEOCHEQ_Isotope was exemplified calculating the equilibrium compositions of phases and carbon isotope fractionations in carbonate hydrothermal systems with and without iron at pH ranging from 4 to 11.



N–C–Ar–He Isotopic Systematics of Quenched Tholeiitic Glasses from the Bouvet Triple Junction Area
Abstract
The paper presents pioneering data on the isotopic composition and elemental ratios of nitrogen, carbon (carbon dioxide), helium, and argon in the fluid phase of quenched tholeiitic glasses from different segments of the Bouvet Triple Junction area (BTJ). The data reflect a complicated geodynamic and tectonic history of the area evolution and indicate that the variations in the elemental ratios of the volatile components of the fluid–gas phase were controlled by a number of various factors: elemental fractionation during melt degassing, mixing of gases from different sources, postmagmatic diffusion-controlled helium loss. The nitrogen–argon and noble gas isotope systematics suggest a significant contribution of the atmospheric component to the mantle source of fluids for the samples from the Spiess Ridge and the segment of the Southwest Indian Ridge (SWIR) and a smaller contribution for the Mid-Atlantic Ridge (MAR) samples. For the Spiess Ridge and SWIR, the most probable contaminating agent was water fluid with dissolved gases of atmospheric composition. This fluid may have been brought to the mantle with ancient crustal rocks involved in magma generation. These crustal rocks may represent small fragments of the Gondwana continent with which sedimentary organic matter could be brought into the magma source.



Noble Gases, Nitrogen and Carbon Isotopic Compositions of the Ghubara Meteorite, Revealed by Stepwise Combustion and Crushing Methods
Abstract
The Ghubara meteorite contains abundant trapped gases in voids of highly retentive phases that can be released by stepwise crushing and thermal degassing. Their composition is dominated by the solar wind component and by radiogenic argon. We favor a scenario in which a large impact event on L-chondrite asteroid 470 Ma ago caused release, mobilization, fractionation and redistribution of accumulated gases on the Ghubara parent body. The Ghubara breccia was formed at that event and occluded trapped gases into the voids. The uncommonly high 20Ne/36Ar ratios of the analysed samples compared to the solar composition is considered to be due to trapping of gases released from surrounding rocks that lost light noble gases preferentially over the heavy ones. The 4He/20Ne and 4He/36Ar ratios, being as usually lower than in solar wind, gradually increase during stepped crushing, indicating non equilibrium distribution of the gases between the voids of different sizes that can be caused by the dynamics of the shock metamorphism process. The neon isotopic composition released by stepwise crushing and combustion is a mixture of two components: solar dominating trapped and cosmogenic Ne. The former component is mainly degassed in the initial crushing steps opening the large inclusions/voids, while the relative contribution of the latter, likely released from galactic cosmic ray produced tracks, increases with progressive crushing. During stepwise combustion the same trend in the release of the Ne components with increasing temperature is observed. The nitrogen and carbon abundances as well as their isotopic compositions in Ghubara are usual for ordinary chondrites. Most of nitrogen is chemically bounded and associated with carbon. The delivery time of Ghubara from the parent body asteroid to the Earth calculated from its exposure age is 9–28 Ma.



Carbon Isotope Composition of Diamond Crystals Grown Via Redox Mechanism
Abstract
We report the carbon isotope compositions of a set of diamond crystals recovered from an investigation of the experimental interaction of metal iron with Mg–Ca carbonate at high temperature and high pressure. Despite using single carbon source with δ13C equal to +0.2‰ VPDB, the diamond crystals show a range of δ13C values from –0.5 to –17.1‰ VPDB. Diamonds grown in the metal-rich part of the system are relatively constant in their carbon isotope compositions (from –0.5 to –6.2‰), whereas those diamonds recovered from the carbonate dominated part of the capsule show a much wider range of δ13C (from –0.5 to –17.1‰). The experimentally observed distribution of diamond’ δ13C using a single carbon source with carbon isotope ratio of marine carbonate is similar to that found in certain classes of natural diamonds. Our data indicate that the δ13C distribution in diamonds that resulted from a redox reaction of marine carbonate with reduced mantle material is hardly distinguishable from the δ13C distribution of mantle diamonds.


