


Vol 55, No 9 (2017)
- Year: 2017
- Articles: 7
- URL: https://journals.rcsi.science/0016-7029/issue/view/9417
Article
Dualistic distribution coefficients of trace elements in the system mineral–hydrothermal solution. IV. Platinum and silver in pyrite
Abstract
The FeS2–Ag–Pt–As system was studied using hydrothermal thermogradient synthesis (with internal sampling) of pyrite crystals at a temperature of 500°C and pressure of 1 kbar in ammonium chloridebased solutions. The modes of occurrence of precious metals (PM) were determined using atomic absorption spectrometry (AAS) in its version of statistical selections of analytical data on single crystals (SSADSC), electron microprobe analysis (EMPA), scanning electron microscopy with energy-dispersive spectrometry (SEM-EDS), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The concentration of Pt in its structural mode in pyrite is as high as 10–11 ppm and is practically not correlated with the As concentration. The dualistic distribution coefficient of Pt between pyrite and hydrothermal solution is 21 ± 7 for the structural mode and 210 ± 80 for the surface-related mode of this element. No inclusions of either any Pt-bearing minerals or Pt itself was detected. Platinum is an element highly compatible with hydrothermal pyrite and is different in this sense from gold, and pyrite is underestimated as a potential concentrator of platinumgroup elements (PGE). The distribution of Ag in pyrite is highly heterogeneous. The likely reason for this is that the Ag solid solution cannot be quenched, and hence, the Ag concentrations broadly vary and are very unsystematically distributed in natural pyrite crystals. Assuming this hypothesis, the limit for Ag accommodation in FeS2 can be estimated using SSADSC at 0.09 ± 0.06 wt % under the experimental parameters, and the distribution coefficient of the structural Ag mode is thereby evaluated at 1400 ± 700. When crystallizing together with FeS2 proustite (Ag3AsS3) near its melting point, forms mixtures with dervillite (Ag2AsS2), in which Ag deficit is counterbalanced by excess divalent As. The limit of As incorporation into pyrite under these conditions is ≤0.1 wt %. SEM-EDS and XPS data indicate that the surface phases are of three types. In the course of crystal growth, practically two-dimensional nonautonomous phases (NP) are aggregated into submicroscopic and micrometer-sized crystalline bodies (mesocrystals) that largely inherit their unusual minor-element composition from NP and are enriched in Ag, Pt, As, and other minor elements. NP and mesocrystals are enriched in Al, which was transferred into them from the Al-bearing Ti alloy of the reaction containers. Silver occur in the volume of the crystals and on their surface as monovalent silver sulfide. Arsenic was detected mostly in the form of di- and trivalent arsenic sulfides. Pentavalent arsenic oxide was identified only on the surface of the crystals and can be easily eliminated by ion milling.



Evolution of the Kerguelen plume and its impact upon the continental and oceanic magmatism of East Antarctica
Abstract
Petrological–geochemical study showed that the alkaline-ultramafics of the Jetty Oasis (rift zone of the Lambert glacier, East Antarctica) are similar in the age (117–110 Ma) and geochemistry to the ultrapotassic alkali basalts of eastern India (Jharia and Raniganj intrusions). Alkaline magmatism in India and Antarctica is related to the activity of the Kerguelen plume, which significantly affected the evolution of the entire eastern Indian Ocean, in particular, determined geodynamic peculiarities of the ocean opening (existence of non-spreading blocks, fragments of the Gondwana lithosphere in oceanic areas) and geochemical characteristics of erupted tholeiitic magmas. Enriched magma sources related to the Kerguelen plume were formed by melting of ancient Gondwana-derived continental fragments, which experienced multiple transformations during its evolution up to the formation of metasomatized mantle under the impact of the Kerguelen plume on the Antarctic and India margins.



First data on late vendian granitoid magmatism of the Northwestern Sayan–Yenisei accretionary belt
Abstract
Late Vendian (540–550 Ma) U–Pb age was established for zircon from postcollisional granites of the Osinovsky Massif located among island-arc complexes of the Isakovka terrane in the northwestern Sayan–Yenisei accretionary belt. The granites were formed 150 Ma after the formation of the host island-arc complexes and 50–60 Ma after the beginning of their accretion to the Siberian Craton. These events mark the final stage of the Neoproterozoic history of the Yenisei Ridge related to the end of accretion of oceanic fragments and the beginning of the Caledonian Orogeny. The granites are subalkaline leucoractic Na–K rocks enriched in Rb, U, and Th. The petrogeochemical and Sm–Nd isotope data (TNd(DM)-2st = 1490–1650 Ma and εNd(T) from–2.5 to–4.4) indicate that their source was highly differentiated continental crust of the SW margin of the Siberian Craton. Therefore, the host Late Riphean island-arc complexes were thrust over the craton margin for distance significantly exceeding the size of the Osinovsky Massif.



Molecular and structural-group characteristics of hydrocarbons in Late Devonian oils of the Timan–Pechora Province
Abstract
The paper presents gaz chromatography–mass spectrometry and 1H- and 13C-NMR data on the composition of hydrocarbon markers and structural-group composition of oils in the Timan–Pechora oil and gas province. The set of samples is subdivided into groups whose oils differ in composition and the distribution of their polycyclic biomarkers. All of the oils show closely similar geochemical characteristics, types of their source organic matter, and thermal maturity. Comparison of oil characteristics (composition of the polycyclic biomarkers) and parameters determined by chromatography–mass spectrometry makes it possible to reveal certain important (and calling for further investigation) relations between the composition of the structural groups of hydrocarbons in the oil fluid and its geochemical characteristics.



Thermodynamic study of calcic amphiboles
Abstract
The paper reports original thermochemical data on six natural amphibole samples of different composition. The data were obtained by high-temperature melt solution calorimetry in a Tian–Calvet microcalorometer and include the enthalpies of formation from elements for actinolite Ca1.95(Mg4.4Fe0.52+Al01)[Si8.0O22](OH)2(–12024 ± 13 kJ/mol) and Ca2.0(Mg2.9Fe1.92+Fe0.23+)[Si7.8Al0.2O22](OH)2, (–11462 ± 18 kJ/mol), and Na0.1Ca2.0(Mg3.2Fe1.62+Fe0.23+)[Si7.7Al0.3O22](OH)2 (–11588 ± 14 kJ/mol); for pargasite Na0.5K0.5Ca2.0-(Mg3.4Fe1.82+Al0.8)[Si6.2Al1.8O22](OH)2 (–12316 ± 10 kJ/mol) and Na0.8K0.2Ca2.0(Mg2.8Fe1.33+Al0.9) [Si6.1Al1.9O22](OH)2 (–12 223 ± 9 kJ/mol); and for hastingsite Na0.3K0.2Ca2.0(Mg0.4Fe1.32+Fe0.93+Al0.2) [Si6.4Al1.6O22](OH)2 (‒10909 ± 11 kJ/mol). The standard entropy, enthalpy, and Gibbs free energy of formation are estimated for amphiboles of theoretical composition: end members and intermediate members of the isomorphic series tremolite–ferroactinolite, edenite–ferroedenite, pargasite–ferropargasite, and hastingsite.



Europium anomaly variation under low-temperature water-rock interaction: A new thermometer
Abstract
The positive europium (Eu) anomaly, enrichment of Eu abundance relative to the neighboring elements, is often observed for water interacted with the rocks. Not only high temperature (~400°C) water-rock interaction such as seafloor hydrothermal fluids, but also relatively lower temperature interaction, less than 100°C, cause positive Eu anomaly. However, relationship between the degree of Eu anomaly and interaction temperature has not been investigated. Water-rock interaction experiments at three different reaction temperatures were performed in this study to reveal the cause of positive Eu anomaly. Comparison of the results under different solution chemistry and temperature conditions showed that the basalt containing plagioclase released larger abundances of REEs than the basaltic glass. The degree of Eu anomaly assessed by Eu/Eu* value was smaller when 0.7 M NaCl solution was used for liquid phase for both solid phases. On the other hand, the Eu/Eu* became larger with increasing reaction temperature for basalts interacted with ultra-pure water. Therefore, it is suggested that the Eu anomaly is potentially used as a fluid-rock interaction thermometer under low salinity condition.



Short Communications
Crystallization temperature of anatectic melt: An example of biotite–muscovite granite in the Rikolatvi structure, Belomorian Mobile Belt
Abstract
Zircon hosted in granite, which crystallized from local pools of anatectic melt among migmatites, in the Rikolatvi structure, Belomorian Mobile Belt, contains minute inclusions of various minerals, biotite and garnet among others. The compositions of the biotite and garnet in the microinclusions differ from those of the same minerals in the granite containing the zircon. The crystallization temperature of the anatectic melt was estimated by the biotite–garnet geothermometer and the composition of the biotite and garnet inclusions at ~800°C.


